Weekly Report

An outline with a bit more details

1. Background of nucleosome positioning (Literature reading)
 a. What is it and its importance
 Chromatin structures, relation to DNA methylation\(^1\), relation to variability of
 gene expression\(^2\), relation to replication origin in yeast\(^3\),
 b. Factors that influence nucleosome positioning
 i. Sequence affect: dinucleotide patterns\(^4,5\), A-tract\(^6\), G/C content\(^7\)
 ii. Chromatin remodelers and barriers: ACF assembly factor\(^8\), barrier
 model\(^9\)
 c. Goal of this manuscript: To compare nucleosome sequential positioning signals
 among different organisms: yeast, fly, and malaria parasite. And try to give an
 explanation for the signals from a structural perspective.

...

Sampling sequences from malaria parasite genome with
bias to sequences that contain A-tract at end regions seems
not able to reproduce the observed A-tract distribution
observed
Method: scan the genome base by base and make nucleosome calls with probability p_1 and with probability p_2 if the following 147 bp contains A-tract at one of its ends (set $p_2 > p_1$ to cause the bias). If a nucleosome call is made, skip the following 147 bps and continue.

MD simulation with GROMACS

A new set of parameters has been worked out through communication with an MD expert. Technical problems with one node on the cluster have been solved. A new simulation with new parameters is now running on the cluster (600ps done).

Reference