








Supplementary Figure 4: Comparison of periodicity signals of A-tracts vs. AT-rich
elements that include TpA steps in in vivo sequences

(a) The distribution of the non-A-tract trimers ATA, TAT, TAA, and TTA (containing
TpA steps) in 23,076 in vivo yeast nucleosome sequences” illustrates that the occurrence of
these sequence motifs has a periodicity of a helical turn. Note that this signal is significantly
weaker than seen for short A-tracts (compare with panel b). Frequencies are symmetrized by
using both complementary strands.

(b) The distribution of A-tract-containing trimers AAA, AAT, ATT, and TTT in 23,076
in vivo yeast nucleosome sequences™ illustrates that the occurrence of short A-tracts has a
significantly more pronounced periodicity signal than AT-rich trimers containing TpA steps
(Supplementary Figure 4a).

(¢c) The distribution of A-tracts of length three base pairs or longer in 23,076 yeast
nucleosome-bound DNA sequences® (reproduced from Figure 4c).

(d) In direct comparison to panel c, this graph shows the distribution of AT-rich regions
of length three base pairs or longer in 23,076 yeast nucleosome-bound DNA sequences. Without
excluding TpA steps the number of occurrences is greater than for A-tracts, but, in contrast to the
comparison shown in panels a and b, the difference in amplitude between these periodicity
signals changes very little (from 4.1% to 4.4%, averaged over all peaks and troughs).



Supplementary Figure 5: Decomposition of the electrostatic potentials into individual
contributions
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Potentials calculated with the linearized PB equation’" are additive and make it possible to
identify the contributions of different components of a nucleotide. (a) Electrostatic potential as a
function of nucleotide sequence calculated with the DelPhi program™® for the MogR binding site
3fdq'® based on the non-linear and linear PB equation, shown in dark blue and magenta,
respectively. Contributions to the potential calculated with the linear PB equation of (b) the
bases, (¢) the sugar moieties, and (d) the phosphates.



Supplementary Figure 6: Electrostatic potentials of MogR binding site for different salt
concentrations
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Electrostatic potential in the minor groove of the MogR binding site 3fdq'’, calculated at
salt concentrations indicated in the figure. All results represent solutions to the non-linear
Poisson-Boltzmann equation obtained from the DelPhi program®"*. Although the absolute
numbers change, the pattern of the sequence dependence is not sensitive to ionic strength.
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