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Abstract

Summary: Several high-throughput protein–DNA binding methods currently available produce highly reproducible
measurements of binding affinity at the level of the k-mer. However, understanding where a k-mer is positioned
along a binding site sequence depends on alignment. Here, we present Top-Down Crawl (TDC), an ultra-rapid tool
designed for the alignment of k-mer level data in a rank-dependent and position weight matrix (PWM)-independent
manner. As the framework only depends on the rank of the input, the method can accept input from many types of
experiments (protein binding microarray, SELEX-seq, SMiLE-seq, etc.) without the need for specialized parameter-
ization. Measuring the performance of the alignment using multiple linear regression with 5-fold cross-validation,
we find TDC to perform as well as or better than computationally expensive PWM-based methods.

Availability and implementation: TDC can be run online at https://topdowncrawl.usc.edu or locally as a python pack-
age available through pip at https://pypi.org/project/TopDownCrawl.

Contact: rohs@usc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput in vitro binding methods, such as protein binding
microarrays (Berger et al., 2006), SELEX-seq (Riley et al., 2014;
Slattery et al., 2011) and SMiLE-seq (Isakova et al., 2017), have
given researchers the ability to precisely quantify transcription fac-
tor (TF) binding in a controlled environment using unbiased pools
of DNA. For each of these methods, the enrichment of each individ-
ual probe is not as informative as the enrichment of k-mers. While
each full-length probe may occur a few times within a sample,
shorter k-mers will occur more frequently, providing highly repro-
ducible measures of binding affinity. Since k-mer enrichment is
inherently context-free, it is common to see a high level of enrich-
ment for k-mers that only covers a portion of the binding site.
Determining which part of the binding site a k-mer covers depends
on alignment. Alignment allows researchers to pinpoint TF–DNA
interactions along the binding site and is a necessary step in the ap-
plication of conventional machine learning approaches such as mul-
tiple linear regression (MLR). Previously described approaches, such
as MEME (Bailey & Elkan, 1994), BEESEM (Ruan et al., 2017) and
SelexGLM (Zhang et al., 2018) are designed to generate position
weight matrices (PWMs) which can subsequently be used to align

k-mer level data, but they were not developed for this purpose.
Furthermore, using a PWM to summarize binding preferences for a
TF is an unnecessary abstraction from the original k-mer level data
and results in the loss of information regarding interdependencies
between positions of the binding site. It is already known that DNA
shape is dependent on local interactions across several base pairs
(bp) and plays a significant role in protein–DNA binding for many
TFs (Yang et al., 2017). Here, we describe a new approach called
Top-Down Crawl (TDC), which can rapidly align large sets of
k-mer level quantitative binding data in a rank-dependent manner
that does not depend on experiment-specific parameterization.

2 TDC implementation

TDC was developed with one goal in mind: the usage of high-
affinity sequences to describe the binding of similar, but lower-
affinity sequences. Then, use those sequences to align other similar
sequences. More specifically, the algorithm starts by assigning the
k-mer with the largest binding metric a shift of 0 bp and is set as the
first reference. All unaligned k-mers that are one single bp mutation
away from the reference are then added to the alignment and
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assigned a shift equal to that of the reference (0 in this case). All un-
aligned k-mers overlapping the reference by up to k�2 bp are then
added to the alignment with a shift equal to that of the reference 61 or
2 bp depending on if that sequence is overlapping on the 50 or 30 end of
the reference (Fig. 1A). For example, the sequence AGTAAAC would
overlap with the 50 end of GTAAACA with a shift of �1 bp. After this
round, the reference sequence is marked as ‘complete’ and the next ref-
erence is determined as the most enriched k-mer amongst those which
have been aligned, excluding sequences already marked as complete.
As before, the new reference is used as a starting point for the addition
of more k-mers to the alignment, so long as they have not been added
previously. This process is terminated when all sequences added to the
alignment have been marked as ‘complete’. Detailed pseudocode of
this process is made available in Supplementary Table S1.

TDC is provided through a freely accessible webserver and
requires only a list of sequences with their corresponding binding
measurements as input. After processing the upload, the user is given
a summary of the alignment as well as a representative PWM,
weighting each sequence by its associated binding metric. This is
most appropriate for SELEX-seq data, for which the relative enrich-
ment is expected to approximate the relative binding affinity (Riley
et al., 2014; Slattery et al., 2011). The alignment itself is provided as
a tab-delimited file where gaps are represented by the ‘_’ character.
The output is stored for 48 h and can be accessed using a unique link
generated for the submission. TDC can also be run locally as a py-
thon package available through pip.

3 Results and comparisons

Given a PWM from a motif-generating method such as MEME,
BEESEM or SelexGLM, k-mers can be assigned to their most likely
‘shift’ relative to the reference, similar to TDC. This is done by pad-
ding a given PWM with neutral positions on the 50 and 30 ends, then

sliding each k-mer along every window along the PWM to see which
shift results in the highest score. The alignments generated by these
methods can then be directly compared with those provided by
TDC. A generalizable workflow for PWM-based k-mer alignment
and evaluation is provided at https://github.com/bhcooper/TDC_
evaluation.

MEME is a well-established method for the alignment of sequen-
ces, but it does not take quantitative data as input. Therefore, every
sequence is weighted equivalently in the construction of the PWM.
For this reason, we run MEME using only k-mers with a log enrich-
ment two standard deviations above the mean. The resulting PWM
can then be used for the alignment of all k-mers as described above.
Alternatively, BEESEM was made specifically for creating PWMs
from SELEX-seq data but is computationally limited to producing
motifs no longer than 10 bp and relies on subsampling for particu-
larly large datasets (Ruan et al., 2017). Although SelexGLM is able
to generate much longer PWMs (Zhang et al., 2018), the currently
available implementation has considerable memory requirements
(Supplementary Table S2, Supplementary Fig. S1), and the output
depends on the specification of several hyperparameters.

To compare TDC with alternate alignment methods, we include
the analysis of 12 SELEX-seq datasets that have previously been
published (Abe et al., 2015; Dantas Machado et al., 2020; Zhang
et al., 2018). We use a k-mer length of 10 bp, which covers the
known binding site for most of the TFs considered and contains
more information about suboptimal binding sites compared to lon-
ger k-mers. Although the goal of TDC is alignment rather than
PWM generation, we can generate a logo from each alignment,
weighting each sequence by its relative enrichment (Fig. 1C,
Supplementary Fig. S2). We found the resulting PWMs to be most
similar to those generated by BEESEM, with additional information
outside the center of the binding site, covering about 15 informative
positions for the androgen and glucocorticoid receptor binding sites
(Supplementary Fig. S2).

For a more in-depth comparison, we determine what percent of
significantly enriched 10-mers are assigned to the same shift, using
TDC as the reference. TDC showed a high level of agreement with
BEESEM, followed by MEME and SelexGLM (Supplementary
Table S3, Supplementary Fig. S1). To evaluate the quality of each
alignment, an MLR model was trained to predict the log enrichment
of aligned 10-mers which were significantly enriched. Base pairs
were one-hot encoded for each position, and the predicted minor
groove width and electrostatic potential were included to account
for interdependencies between positions (Chiu et al., 2016). For
MLR to perform well, sequences need to be aligned such that
position-specific permutations along the binding site predictably
modulate binding affinity. We found TDC to exhibit the best aver-
age performance as measured by the median R2 using 5-fold cross
validation (Fig. 1B, Supplementary Table S4). Comparing the wall-
clock times, BEESEM was the slowest, requiring hours to complete,
whereas TDC only takes seconds (Supplementary Table S5 and
Supplementary Fig. S1). SelexGLM was faster than BEESEM but
required a large amount of memory in the tests performed
(Supplementary Table S2 and Supplementary Fig. S1). The primary
reason these methods are more computationally demanding is be-
cause they work at the level of the full-length read rather than at the
level of the k-mer. Since MEME was only used to align k-mers with
a log enrichment two standard deviations above the means, its wall-
clock time was dependent on the number of sequences passing this
threshold. While the quickest batch, including 653 sequences, was
aligned in about 5 s, the slowest batch, including just 4889 sequen-
ces took 18 min, demonstrating a 216-fold increase in wall-clock
time for a 7.5-fold increase in the number of sequences aligned
(Supplementary Table S5). Finally, we tested the MLR performance
of various length k-mers aligned with TDC and found the optimal
length to be 10 bp (Supplementary Fig. S3).

4 Conclusions

Although we demonstrate TDC’s speed and performance using
SELEX-seq data, the alignment framework is highly flexible as it

Fig. 1. TDC overview and performance. (A) Depiction of a single iteration of TDC,

showing how the algorithm would align several similar k-mers based on a given ref-

erence. (B) Violin plots showing model performance across 12 SELEX-seq datasets.

MLR models were trained using base sequence, minor groove width, and electro-

static potential information along aligned 10-mers to predict the log enrichment of

10-mers with a Z-score larger than 2. Models were trained using 5-fold cross valid-

ation with elastic net regularization and the median performance across the tests is

reported. (C) TDC PWMs generated using all 10-mers aligned with a shift of 65 bp,

weighting each sequence by its relative enrichment
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only depends on the rank of the sequences provided. This allows for
the alignment of binding data from a variety of experimental
approaches used today and those that are produced in the future.
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