SUPPLEMENTARY DATA

Top-Down Crawl: A method for the ultra-rapid and motif-free alignment of sequences with associated binding metrics

Brendon H. Cooper¹, Tsu-Pei Chiu¹, and Remo Rohs^{1,2,*}

¹Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA

²Departments of Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA

*Corresponding author: rohs@usc.edu

Supplementary Table S1: Pseudocode of entire alignment process performed by Top-Down Crawl (TDC).

	ut: Table containing standard DNA sequences (A,C,G,T) of equal length in column 1 and binding metrics blumn 2
	$df \leftarrow$ dataframe containing binding metrics indexed by sequence
2:	······································
3:	// Average reverse complements or copy value from partner if absent from input
4:	$df \ rc \leftarrow Copy \ df$ and reverse complement all sequences
5:	$df \leftarrow$ Append df_{rc} to df , group by index, and save mean for each index
6:	
7:	// Initialization
8:	$df \leftarrow$ Insert boolean column, <i>isAligned</i> , filled with False, to keep track of sequences which have already
	been added to the alignment
9:	$df \leftarrow$ Insert boolean column, was Ref, filled with False, to keep track of sequences which have already
	been used as a reference for adding other sequences to the alignment
	$df \leftarrow$ Insert integer column, <i>shift</i> , filled with N/A, to keep track of the shift assigned to each sequence
	$top \leftarrow$ Index of sequence with largest binding metric from df
	$k \leftarrow length(top)$
	$df[top][shift] \leftarrow 0$
	$df[top][isAligned] \leftarrow True$
15:	Delete reverseComplement(top) from df
16:	
17:	// Continue iterating until all aligned sequences have been used as a reference or until all sequences are aligned
18:	while (<i>isAligned</i> == True and <i>wasRef</i> == False for any row in <i>df</i>) and (<i>isAligned</i> == False for any row <i>df</i>)
19:	<i>unchecked</i>
20:	$ref \leftarrow$ Index with largest binding metric from unchecked
21:	$refshift \leftarrow df[ref][shift]$
22:	
23:	$SNPs \leftarrow$ Indices within df that are 1 mismatch away from ref and where is Aligned == False
24:	$df[SNPs][shift] \leftarrow refshift$
25:	$df[SNPs][isAligned] \leftarrow True$
26:	Delete reverseComplement(SNPs) from df
27:	

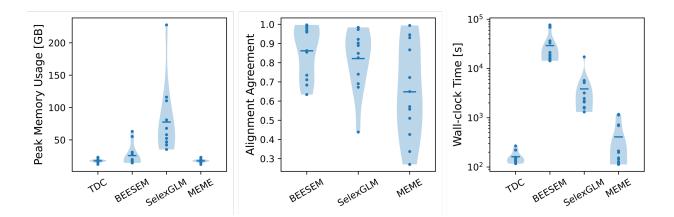
```
olap_{-1} \leftarrow Indices within df that overlap with the first k - 1 bases of ref and where is Aligned == False
28:
29:
         df[olap_1][shift] \leftarrow refshift - 1
30:
          df[olap_1][isAligned] \leftarrow True
          Delete reverseComplement(olap-1) from df
31:
32:
         olap_{-2} \leftarrow Indices within df that overlap with the first k-2 bases of ref and where is Aligned == False
33:
         df[olap_2][shift] \leftarrow refshift - 2
34:
35:
         df[olap_2][isAligned] \leftarrow True
         Delete reverseComplement(olap-2) from df
36:
37:
38:
         olap_{+1} \leftarrow Indices within df that overlap with the last k-1 bases of ref and where is Aligned == False
39:
         df[olap_{+1}][shift] \leftarrow refshift + 1
40:
         df[olap_{+1}][isAligned] \leftarrow True
41:
         Delete reverseComplement(olap+1) from df
42:
43:
         olap_{+2} \leftarrow Indices within df that overlap with the last k-2 bases of ref and where is Aligned == False
44:
         df[olap_{+2}][shift] \leftarrow refshift + 2
45:
         df[olap_{+2}][isAligned] \leftarrow True
          Delete reverseComplement(olap+2) from df
46:
47:
48:
          df[ref][wasRef] \leftarrow True
49:
50: df \leftarrow Subset of df where isAligned == True
51: df \leftarrow Pad indices of df with "-" based on shift
52: Output Save df as a table including the padded sequence, averaged binding metric, and shift
```

Supplementary Table S2: Peak memory usage for calculation of enrichment (Riley et al., 2014; Slattery et al., 2011) and TDC, BEESEM (Ruan et al., 2017), SelexGLM (Zhang et al., 2018), or MEME (Bailey & Elkan, 1994) based alignments, evaluated for 12 SELEX-seq datasets (Abe et al., 2015; Dantas Machado et al., 2020; Zhang et al., 2018). We also report the memory requirements for *k*-mer level enrichment calculation, since this a necessary step preceding TDC or MEME based alignment as described in the text. Data is plotted in Supplementary Figure S1.

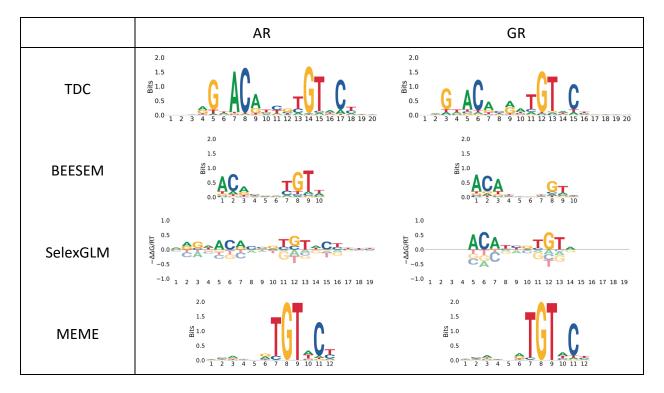
	Enrichment	TDC + Enrichment	BEESEM	SelexGLM	MEME + Enrichment
AR	19 GB	20 GB	63 GB	116 GB	20 GB
GR	19 GB	19 GB	55 GB	81 GB	19 GB
MEF2B	23 GB	23 GB	31 GB	228 GB	23 GB
Exd-AbdA	18 GB	18 GB	15 GB	42 GB	18 GB
Exd-AbdB	18 GB	18 GB	20 GB	58 GB	18 GB
Exd-Antp	18 GB	18 GB	17 GB	46 GB	18 GB
Exd-Dfd	18 GB	18 GB	14 GB	35 GB	18 GB
Exd-Lab	18 GB	18 GB	16 GB	47 GB	18 GB
Exd-PbFI	12 GB	12 GB	28 GB	110 GB	12 GB
Exd-Scr	16 GB	16 GB	15 GB	52 GB	16 GB
Exd-Ubxla	17 GB	17 GB	18 GB	68 GB	17 GB
Exd-UbxIVa	18 GB	18 GB	16 GB	47 GB	18 GB

Supplementary Table S3: Table of alignment agreements, indicating what fraction of sequences were assigned to the same shift according to TDC and a given method. Data is plotted in Supplementary Figure S1.

	BEESEM	SelexGLM	MEME
AR	63%	44%	43%
GR	68%	74%	56%
MEF2B	86%	85%	57%
Exd-AbdA	98%	97%	95%
Exd-AbdB	71%	69%	27%
Exd-Antp	73%	67%	34%
Exd-Dfd	97%	89%	65%
Exd-Lab	96%	90%	51%
Exd-PbFI	85%	83%	72%
Exd-Scr	96%	92%	87%
Exd-Ubxla	99%	97%	93%
Exd-UbxIVa	100%	98%	99%

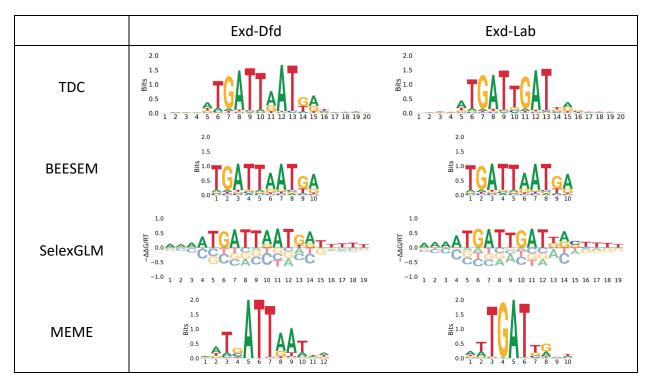

Supplementary Table S4: Multiple linear regression (MLR) models were trained using base sequence, minor groove width, and electro-static potential information along aligned 10-mers to predict the log enrichment of 10-mers with a Z-score larger than 2. Models were trained using 5-fold cross validation with elastic net regularization and the median performance across the tests is reported. Data is plotted in Figure 1.

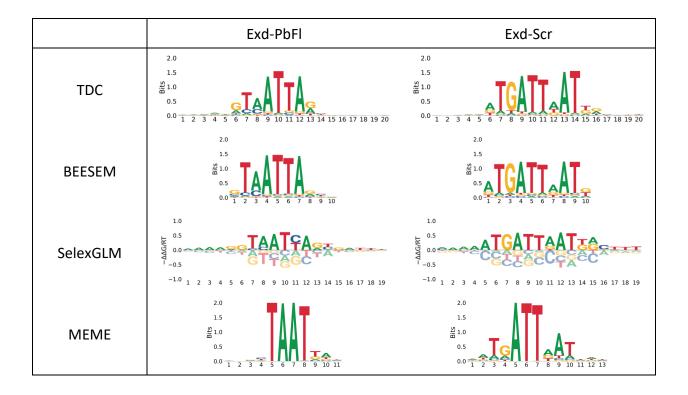
	TDC	BEESEM	SelexGLM	MEME
AR	0.84	0.80	0.83	0.83
GR	0.76	0.75	0.74	0.78
MEF2B	0.56	0.60	0.63	0.40
Exd-AbdA	0.67	0.69	0.70	0.66
Exd-AbdB	0.37	0.33	0.33	0.22
Exd-Antp	0.42	0.36	0.34	0.20
Exd-Dfd	0.65	0.64	0.59	0.64
Exd-Lab	0.69	0.66	0.59	0.40
Exd-PbFI	0.75	0.76	0.75	0.73
Exd-Scr	0.82	0.76	0.78	0.65
Exd-Ubxla	0.81	0.77	0.73	0.59
Exd-UbxIVa	0.85	0.85	0.84	0.85

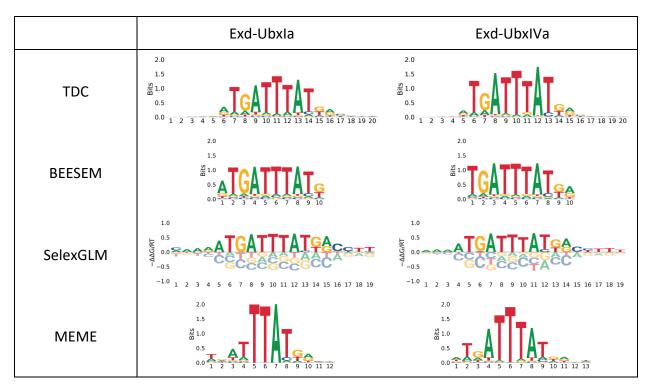

Supplementary Table S5: Wall-clock time required for each of the methods evaluated. We also report the time requirements for *k*-mer level enrichment calculation, since this a necessary step preceding TDC or MEME based alignment as described in the text. Data is plotted in Supplementary Figure S1.

	Enrichment	TDC + Enrichment	BEESEM	SelexGLM	MEME + Enrichment
AR	0h 3m 9s	0h 3m 41s	21h 17m 59s	1h 26m 0s	0h 11m 32s
GR	0h 3m 5s	0h 3m 40s	19h 6m 31s	0h 41m 6s	0h 18m 55s
MEF2B	0h 4m 1s	0h 4m 28s	10h 6m 30s	4h 46m 34s	0h 11m 56s
Exd-AbdA	0h 1m 47s	0h 1m 57s	4h 24m 37s	0h 27m 10s	0h 1m 53s
Exd-AbdB	0h 2m 8s	0h 2m 38s	5h 53m 40s	0h 35m 27s	0h 3m 31s
Exd-Antp	0h 2m 2s	0h 2m 22s	4h 59m 24s	0h 34m 47s	0h 2m 23s
Exd-Dfd	0h 2m 2s	0h 2m 9s	3h 58m 42s	0h 21m 53s	0h 2m 7s
Exd-Lab	0h 2m 23s	0h 2m 37s	4h 28m 12s	0h 26m 6s	0h 2m 33s
Exd-PbFI	0h 1m 30s	0h 2m 17s	9h 8m 54s	1h 34m 51s	0h 19m 35s
Exd-Scr	0h 1m 46s	0h 2m 1s	4h 14m 29s	0h 36m 9s	0h 2m 0s
Exd-Ubxla	0h 2m 9s	0h 2m 27s	5h 18m 2s	0h 53m 4s	0h 3m 18s
Exd-UbxIVa	0h 1m 51s	0h 2m 4s	4h 31m 49s	0h 27m 14s	0h 2m 2s

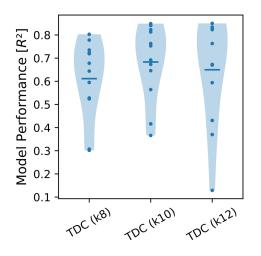

Supplementary Figure S1: Violin plots of data given in Supplementary Tables S2, S3, and S5. (Violin plots of data given in Supplementary Table S4 are shown in Figure 1.)




Supplementary Figure S2: Comparison of PWMs generated from each method. The TDC PWM is generated using all 10-mers aligned with a shift of ±5, weighting each sequence by its relative enrichment. The units of the SelexGLM method are provided in terms of $-\Delta\Delta G/RT$ as described in the original method. All others are shown in terms of bits.



	MEF2B	Exd-AbdA
TDC	2.0 1.5 $\stackrel{12}{\cong}$ 1.0 0.5 0.0 $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19 \ 20$	$\begin{array}{c} 2.0 \\ 1.5 \\ \underbrace{\cancel{9}}{21.0} \\ 0.5 \\ 0.0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \end{array}$
BEESEM	2.0 1.5 $\stackrel{(2)}{=} 1.0$ 0.5 0.0 1×2 3×4 5×6 7×8 9×10	2.0 1.5 $ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$
SelexGLM		
MEME	$\begin{array}{c} 2.0 \\ 1.5 \\ \underbrace{99}_{11} 1.0 \\ 0.5 \\ 0.0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$ \begin{array}{c} 2.0 \\ 1.5 \\ 2.1 \\ 0.5 \\ 0.0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array} $



Supplementary Figure S3: Violin plots showing model performance across 12 SELEX-seq datasets, using various length *k*-mers as input to TDC. MLR models were trained using base sequence, minor groove width, and electrostatic potential information along aligned *k*-mers to predict the log enrichment of *k*-mers with a Z-score larger than 2. Models were trained using 5-fold cross validation with elastic net regularization and the median performance across the tests is reported.

Supplementary References

- Abe, N., Dror, I., Yang, L., Slattery, M., Zhou, T., Bussemaker, H. J., Rohs, R., & Mann, R. S. (2015). Deconvolving the recognition of DNA shape from sequence. *Cell*, *161*(2), 307-318.
- Bailey, T. L., & Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. *Proc. Int. Conf. Intell. Syst. Mol. Biol.*, 2, 28-36.
- Dantas Machado, A. C., Cooper, B. H., Lei, X., Di Felice, R., Chen, L., & Rohs, R. (2020). Landscape of DNA binding signatures of myocyte enhancer factor-2B reveals a unique interplay of base and shape readout. *Nucleic Acids Res.*, 48(15), 8529-8544.
- Riley, T. R., Slattery, M., Abe, N., Rastogi, C., Liu, D., Mann, R. S., & Bussemaker, H. J. (2014). SELEX-seq: a method for characterizing the complete repertoire of binding site preferences for transcription factor complexes. In *Hox Genes* (pp. 255-278). Springer.
- Ruan, S., Swamidass, S. J., & Stormo, G. D. (2017). BEESEM: estimation of binding energy models using HT-SELEX data. *Bioinformatics*, 33(15), 2288-2295.
- Slattery, M., Riley, T., Liu, P., Abe, N., Gomez-Alcala, P., Dror, I., Zhou, T., Rohs, R., Honig, B., & Bussemaker, H. J. (2011). Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. *Cell*, 147(6), 1270-1282.
- Zhang, L., Martini, G. D., Rube, H. T., Kribelbauer, J. F., Rastogi, C., FitzPatrick, V. D., Houtman, J. C., Bussemaker, H. J., & Pufall, M. A. (2018). SelexGLM differentiates androgen and glucocorticoid receptor DNA-binding preference over an extended binding site. *Genome Res.*, 28(1), 111-121.

Author Contributions

B.H.C. conceived the TDC method, independently executed the project, and wrote the manuscript. T.P.C. tested the method and provided advice on implementation. R.R. supervised the project. The authors thank Luigi Manna for help with server setup.