Science Advances

advances.sciencemag.org/cgi/content/full/6/49/eabe2955/DC1

Supplementary Materials for

Regulatory encoding of quantitative variation in spatial activity of a Drosophila enhancer

Yann Le Poul, Yaqun Xin, Liucong Ling, Bettina Mühling, Rita Jaenichen, David Hörl, David Bunk, Hartmann Harz, Heinrich Leonhardt, Yingfei Wang, Elena Osipova, Mariam Museridze, Deepak Dharmadhikari, Eamonn Murphy, Remo Rohs, Stephan Preibisch, Benjamin Prud'homme*, Nicolas Gompel*
*Corresponding author. Email: benjamin.prudhomme@univ-amu.fr (B.P.); gompel@bio.lmu.de (N.G.)
Published 2 December 2020, Sci. Adv. 6, eabe2955 (2020)
DOI: 10.1126/sciadv.abe2955

The PDF file includes:

Figs. S1 to S4
Tables S1 to S3
Legends for data files S1 to S4
Additional notes on logRatios
Other Supplementary Material for this manuscript includes the following:
(available at advances.sciencemag.org/cgi/content/full/6/49/eabe2955/DC1)
Data files S1 to S4

Supplementary Materials

Figure S1. First two axes of variation in a principal component analysis of all individual wings used to generate the average reporter expression of Figure 1. Each wing is depicted by a colored dot, and each construct by a color. PC1 captures 87.8% of the variation and corresponds to overall changes in the activity of the spot ${ }^{196}$ CRE. PC2 captures 2.1% of the variation and appears to represent spatial difference in CRE activity between lines. The direction of variation along each principal component is represented on a wing with a colormap next to each axis.

Figure S2. Local rigidity along the wild-type and mutant spot ${ }^{196}$. (A) Each graph is a plot of the length of the longest consecutive $\mathrm{A}_{\mathrm{n}} \mathrm{T}_{\mathrm{n}}$ sequence that a base pair participates in, a proxy for sequence rigidity at this position. The first graph on top is the wild type ($[+]$) alone. The remaining graphs show plots for each mutant ([0], ..., [16]) with a solid black line, compared to the wild type represented with a dotted magenta line. (B) Schematics illustrating the hypothetical consequence of local DNA rigidity (caused by an A-tract) on TF interactions. A flexible linker between two TFBSs would favor interactions between 2 bound TFs, while a stiffer linker of the same length would limit, or prevent these interactions.

Figure S3. Pattern changes between wild-type and mutant spot \boldsymbol{t}^{196} constructs. (A) Average phenotypes reproduced from Figure 1B. (B) difference images ([+] - [mutant]) for intensity values of each pixel of registered wing images) highlight changes in the distribution of the enhancer activity across the wing. Note that this operation introduces a visual bias towards changes in region of high expression, contrasting with logRatio images of Figure 2.

[AB-]

$B^{\text {average phenotypes }}$

F $\quad \log \left(\frac{[\text { mutant }]}{[--C]}\right)$

Figure S4. \log Ratio of all block constructs. (A) Schematics of block constructs repeated from Figure 3A for legibility. (B) Average phenotypes of constructs shown in (A), repeated from Figure 3B for legibility. Colormap of average phenotypes normalized for all constructs of the block series, including block permutations of Figure 4B. (C) Average phenotypes in (B) compared to the average phenotype of the wild type [ABC] (logRatio). (D) Average phenotypes in (\mathbf{B}) compared to the average phenotype of [A--] (logRatio). (E) Average phenotypes in (B) compared to the average phenotype of [-B-] (logRatio). (F) Average phenotypes in (B) compared to the average phenotype of $[--C]$ (logRatio). Colormaps in (C)-(F) indicate an increase or a decrease of activity compared to the reference (denominator).

Table S1. Sequences of $\operatorname{spot}^{196}$ enhancer variants.

- wild type [+] or [ABC]
$>$ spot $^{196[+]}$
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT AATTGATGTGCGCCCATGCAAT
$\stackrel{\text { single mutants [0] to [16] }}{>\text { spot } t^{196[0]}}$
AAAAAAAAAAAAAAAAAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAG ATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTA AAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCG CCTAATTGATGTGCGCCCATGCAAT
$>$ Spot $^{196[1]}$
TCTAATTATTCCGTTTAAAAAAAAAAAATTCTGAGCTAAAACTCGCTTATGGAGAGA TCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAA AACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC TAATTGATGTGCGCCCATGCAAT
$>$ spot $^{196[2]}$
TCTAATTATTCCGTTTAAGGACGCAATTAAAAAAAAAAAAACTCGCTTATGGAGAGA TCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAA AACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC TAATTGATGTGCGCCCATGCAAT
$>$ spot ${ }^{196[3]}$
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAAAAAAAAAAAATGGAGAGA TCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAA AACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC TAATTGATGTGCGCCCATGCAAT
$>$ spot $^{196[4]}$
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTAAAAAAAAAAA ATAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT AATTGATGTGCGCCCATGCAAT
$>$ spot 196 [5]
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CAAAAAAAAAAAGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAA AACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC TAATTGATGTGCGCCCATGCAAT
$>$ spot $^{196[6]}$
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATTTCCCCAAAAAAAAAAAAAATAAATTAATCGAATTCCCCGCTGGCTATTAA AACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC
$>$ spot ${ }^{196[7]}$
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATTTCCCCGCTTTTGGCTTGAAAAAAAAAAAAGAATTCCCCGCTGGCTATTAA AACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC TAATTGATGTGCGCCCATGCAAT
$>$ spot $^{196[8]}$
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCAAAAAAAAAAAAAGGCTATTAA AACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC TAATTGATGTGCGCCCATGCAAT
$>$ spot $^{196[9]}$
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTAAAAAAAAAAA ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT AATTGATGTGCGCCCATGCAAT
$>$ spot ${ }^{196}$ [10]
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA AAAAAAAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC TAATTGATGTGCGCCCATGCAAT
$>$ spot ${ }^{196[11]}$
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA ACACACAAAAAAAAAAAAAATCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC TAATTGATGTGCGCCCATGCAAT
$>$ spot $^{196[12]}$
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA ACACACAAAAGGCGCTCTCGAAAAAAAAAATGTAAATTGCAAATTGCTCAATCCGCC TAATTGATGTGCGCCCATGCAAT
$>$ spot ${ }^{196[13]}$
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA ACACACAAAAGGCGCTCTCGTCTGTTTCAAAAAAAAAAAAAAATTGCTCAATCCGCC TAATTGATGTGCGCCCATGCAAT
$>$ spot $^{196[14]}$
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAAAAAAAAAAACCGCC TAATTGATGTGCGCCCATGCAAT
$>$ spot ${ }^{196[15]}$
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATAAAAA AAAAAAATGTGCGCCCATGCAAT
$>$ spot ${ }^{196[16]}$
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT AATTGAAAAAAAAAAAAAAAAA

[^0]TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCC GCCTAATTGATGTGCGCCCATGCAATTTTCCCCGCTTTTGGCTTGAATAAATTAATCG AATTCCCCGCTGGCTATTAAAA
$>$ spot ${ }^{196[B A C]}$
TTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAAATCTA ATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGATCTAA ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT AATTGATGTGCGCCCATGCAAT
$>$ spot ${ }^{196[B C A]}$
TTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAAACACA CAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCTAATTG ATGTGCGCCCATGCAATTCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAA CTCGCTTATGGAGAGATCTAAA

```
>spot t96 [CBA]
CACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCTA
ATTGATGTGCGCCCATGCAATTTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTC
CCCGCTGGCTATTAAAATCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAA
CTCGCTTATGGAGAGATCTAAA
```

- Randomized blocks
$>$ spot 196 [A--]
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATCCGAATTTTTTCTTGTCCGACTAGAAACGACTAATTTAGCCGTACCACATGT TGTCGACTCAGAAACATTATTCCCATTTACGCGTAAGCAAAAAATGCGTCCTTATCGA ACTTACACTCGCCTGCGTTGGT
$>$ spot $^{196[-B-]}$
ATAATATTGCATCTCATTGTGGTGCTAGATAATCATCTAGGCTAAATCCAAAACTGTT GCATGTTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA AGTCGACTCAGAAACATTATTCCCATTTACGCGTAAGCAAAAAATGCGTCCTTATCG AACTTACACTCGCCTGCGTTGGT
$>$ spot $^{196[--C]}$
ATAATATTGCATCTCATTGTGGTGCTAGATAATCATCTAGGCTAAATCCAAAACTGTT GCATGTCCGAATTTTTTCTTGTCCGACTAGAAACGACTAATTTAGCCGTACCACATGT TCACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT AATTGATGTGCGCCCATGCAAT
$>$ spot ${ }^{196[A B-]}$
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA AGTCGACTCAGAAACATTATTCCCATTTACGCGTAAGCAAAAAATGCGTCCTTATCG AACTTACACTCGCCTGCGTTGGT
$>_{\text {spot }}{ }^{196[}[$-C]
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT CTAAATCCGAATTTTTTCTTGTCCGACTAGAAACGACTAATTTAGCCGTACCACATGT TCACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT AATTGATGTGCGCCCATGCAAT
$>$ spot ${ }^{196[-B C]}$
ATAATATTGCATCTCATTGTGGTGCTAGATAATCATCTAGGCTAAATCCAAAACTGTT GCATGTTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT AATTGATGTGCGCCCATGCAAT
$>$ spot $^{196[---]}$
ATAATATTGCATCTCATTGTGGTGCTAGATAATCATCTAGGCTAAATCCAAAACTGTT GCATGTCCGAATTTTTTCTTGTCCGACTAGAAACGACTAATTTAGCCGTACCACATGT TGTCGACTCAGAAACATTATTCCCATTTACGCGTAAGCAAAAAATGCGTCCTTATCGA ACTTACACTCGCCTGCGTTGGT

genotype	number of individuals
\varnothing	38
[+]	49
[0]	27
[1]	31
[2]	25
[3]	22
[4]	38
[5]	35
[6]	51
[7]	60
[8]	67
[9]	27
[10]	46
[11]	33
[12]	61
[13]	39
[14]	44
[15]	77
[16]	23
$W T-[A B C]$	61
[-BC]	32
[A-C]	49
[$A B-$]	24
[$A--]$	33
[-B-]	35
[--C]	32
[---]	37
[ACB]	39
[BAC]	34
[BCA]	37
[CBA]	34

Table S2. Number of individuals analyzed for each construct in this study.

	regulatory potential (sufficiency)	necessity
[A--]	A is sufficient for vein expression	
I-B-I	B is sufficient for alula expression	
[--C]	C is sufficient for wing blade expression	
[AB-]		C is necessary for high levels in the spot
[$A-C]$	A is sufficient to repress wing blade expression (outside of spot region)	B is necessary for alula expression B is necessary for full spot levels
[-BC]	B is sufficient to repress wing blade expression (outside of spot region)	A is necessary for full spot levels

Table S3. Analysis of necessity and sufficiency of each block.

Data file S1. Scores for the PCA shown in Figure S1.

Data file S2. Significance of difference in activity between pairs of groups, using the first 6 principal components.

Data file S3. Significance of the difference in average expression levels among constructs of the first mutant series ([0]-[16]).

Data file S4. Significance of difference in average expression levels among constructs of the second mutant series (blocks).

Additional notes on logRatios.

Using average phenotypes to evaluate the effect of the mutations we introduced is useful but limited. Indeed, the differences we observe are visually driven by changes in regions of the wing with elevated enhancer activity. It is then difficult to appreciate whether a mutation affects enhancer activity locally or uniformly across the wing. Differential gene expression is generally represented using log ratios (see reference (30) in main text), which measure the fold changes in expression level of a gene relative to a reference (e.g., the expression of the same gene under different conditions). We applied this principle to our image data to visually compare the activity of different constructs across the wing. Classical log ratio translates here to the \log of the pixelwise ratio between two average phenotypes at every pixel (hereafter noted logRatio). logRatio images of mutants $v s$. wild type are of particular interest to decipher the regulatory logic, because they reveal in which proportion a mutant affects the enhancer activity across the wing. Compared to absolute difference, logRatio are not driven by regions with high levels of expression, but by regions with a large fold change, irrespective of the wild-type activity pattern. In a theoretical case where the enhancer activity depends directly and linearly on a given TF concentration, the logRatio image reflects logically the spatial distribution of this particular TF. This is also the case if this integration of this TF information is only modulated by uniformly distributed TFs. The underlying logic is straightforward: in this theoretical case, a sequence mutation breaking the interaction between the DNA and the TF will have a significant effect on the phenotype. The intensity of the local phenotypic effect (relatively to the wild-type levels) will depend on the local intensity of the TF-DNA interaction across the wing, and therefore on the
local concentration of the TF. Logically, this interaction is not happening where the TF is absent, with no effect on the phenotype. For any situation departing from these ideal conditions, the resemblance between the logRatio and the TF distribution is compromised. For instance, when a TF is locally repressed by another, logRatio will correspond to the net loss of spatial information integration, including the loss of this repression. The logRatio of a mutant affecting a known TFBS for which the corresponding TF distribution is known therefore informs us on its contribution in the regulatory logic of the enhancer, and how linearly this integration happens. Moreover, even without additional knowledge on the regulatory logic and TF spatial variation, the variety of \log Ratio patterns suggests the action of different spatial inputs integrated by the enhancer.

[^0]: - Permutations of blocks
 $>$ spot $^{196[\text { ACB] }}$

