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ABSTRACT

TFBSshape (https://tfbsshape.usc.edu) is a motif
database for analyzing structural profiles of tran-
scription factor binding sites (TFBSs). The main ra-
tionale for this database is to be able to derive mech-
anistic insights in protein–DNA readout modes from
sequencing data without available structures. We
extended the quantity and dimensionality of TFB-
Sshape, from mostly in vitro to in vivo binding and
from unmethylated to methylated DNA. This new re-
lease of TFBSshape improves its functionality and
launches a responsive and user-friendly web inter-
face for easy access to the data. The current ex-
pansion includes new entries from the most recent
collections of transcription factors (TFs) from the
JASPAR and UniPROBE databases, methylated TF-
BSs derived from in vitro high-throughput EpiSELEX-
seq binding assays and in vivo methylated TFBSs
from the MeDReaders database. TFBSshape content
has increased to 2428 structural profiles for 1900
TFs from 39 different species. The structural profiles
for each TFBS entry now include 13 shape features
and minor groove electrostatic potential for standard
DNA and four shape features for methylated DNA. We
improved the flexibility and accuracy for the shape-
based alignment of TFBSs and designed new tools
to compare methylated and unmethylated structural
profiles of TFs and methods to derive DNA shape-
preserving nucleotide mutations in TFBSs.

INTRODUCTION

A mechanistic understanding of transcriptional regulation
and other cellular processes requires a structural charac-
terization of transcription factor (TF)–DNA binding prop-
erties. TF–DNA binding preferences are commonly de-
scribed as consensus sequence represented by a position
weight matrix (PWM) (1,2) and visualized as motif logo

(3,4). Traditional PWM-based methods assume that each
nucleotide independently contributes to TF–DNA bind-
ing; however, this does not hold generally for every DNA-
binding protein (5–7). One way of encoding interdependen-
cies between nucleotide positions is k-mer models (8,9) with
dinucleotide containing PWMs being the simplest descrip-
tion that cover exclusively interactions between adjacent
base pairs (10,11). An alternative representation of inter-
dependencies between base pairs is the three-dimensional
(3D) DNA structure (12,13), resulting from physical inter-
actions such as inter-base pair stacking and other interac-
tions between nucleotide positions within a TF binding site
(TFBS).

Several studies demonstrated that the readout of 3D
DNA structure is an important component of the bind-
ing specificity of TFs (14–17) and downstream gene expres-
sion (18). In some cases, TFs recognize low-affinity binding
sites with less pronounced sequence motifs (19,20) or tend
to bind to DNA even in the absence of the sequence motif
both in vitro (21) and in vivo (22). The initial version of TF-
BSshape (23) characterized the structural profile of binding
sites using four DNA shape features, including helix twist
(HelT), minor groove width (MGW), propeller twist (ProT)
and Roll, all of which are considered important structural
properties for TF–DNA readout mechanisms (12,24). How-
ever, since the original publication of TFBSshape (23), we
have derived nine additional DNA shape features (25) and
one biophysical feature, namely minor groove electrostatic
potential (EP) (26), extending the mechanistic description
of TF–DNA recognition (13,25,27). The new release of TF-
BSshape provides 14 DNA feature profiles for each dataset
of TFs, comprised of 13 shape features and EP. The DNA
shape features include six inter-base pair parameters (HelT,
Rise, Roll, Shift, Slide and Tilt), six intra-base pair param-
eters (Buckle, Opening, ProT, Shear, Stagger and Stretch)
and MGW.

Emerging evidence reveals that the DNA binding of some
TFs is sensitive to DNA methylation at TFBSs both in
vitro and in vivo (28–34). Several studies show that aberrant
methylation patterns on DNA lead to human disease and
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cancer (35,36). CpG methylation is the most frequent DNA
modification, where a methyl group is added at the major
groove edge of the cytosine base. This not only changes the
chemical signature of C/G base pairs but also alters the
DNA structure by slightly widening the major groove due to
the addition of a bulky methyl group and, in turn, narrow-
ing the minor groove (36). We observed that such structural
effects of DNA methylation are dependent on the sequence
context (37). Methylation-induced changes in 3D DNA
structure were found to explain the methylation-dependent
cleavage rate of DNase I (38) and binding affinity of hu-
man Pbx–Hox heterodimers (37). Thus, it becomes essential
to understand the structural readout mechanisms under-
lying the recognition through DNA shape changes due to
CpG methylation. The new release of TFBSshape provides
four shape features (HelT, MGW, ProT and Roll) for the
structural profiles of methylated TFBSs derived from an in
vitro high-throughput binding assay, EpiSELEX-seq (28),
and a motif database for methylated TFBSs, MeDReaders
(39). EpiSELEX-seq probes the sensitivity of TF binding
to methylated DNA. MeDReaders integrates whole genome
bisulfite sequencing (WGBS) and ChIP-seq data in multiple
cell lines.

An increasing number of studies have demonstrated that
mechanisms for TF recognition of specific DNA sequences
involve an interplay between DNA base and shape readout
(40). To independently probe the importance of these read-
out mechanisms, researchers either design mutations of the
cognate binding sites or disrupt certain DNA shape signa-
tures (41,42). The current TFBSshape release introduces a
new tool for designing novel binding sites, by preserving ei-
ther DNA shape or nucleotide sequence while varying the
other feature group, which can provide systematic mutation
design for downstream experiments. This release also pro-
vides a new shape alignment tool to align structural profiles
based on ensemble binding sites for the investigation of pos-
sible shape readout mechanisms.

DATABASE EXPANSIONS

Increased collection of DNA structural profiles for unmethy-
lated DNA

The TFBSshape database provides DNA structural pro-
files for the TFBS sequences collected from various data
sources (Figure 1A). For the current version of the TF-
BSshape database, we added and updated the collection
of DNA structural profiles based on the latest TFBS se-
quences obtained from JASPAR (43) and UniPROBE (44),
the two main databases incorporated in the original version
of TFBSshape. New content covers 1243 structural pro-
files for 1091 TFs in JASPAR (a 235% increase) and 886
structural profiles for 627 TFs in UniPROBE (a 141% in-
crease) (Table 1). The current version of TFBSshape has
been updated with the latest version of JASPAR 2020 (43)
and with the continuously updated UniPROBE database
(http://thebrain.bwh.harvard.edu/uniprobe/).

Integration of motif databases for methylated DNA

In this release, we have expanded the dimensionality of
the TFBSshape database by providing DNA structural

profiles for methylated TFBSs obtained from EpiSELEX-
seq binding experiments (28) and the recently published
MeDReaders database for methylated motifs (39) (Figure
1A). EpiSELEX-seq probes the sensitivity of TF binding
to DNA with 5-methylcytosine (5mC) in vitro using mas-
sively parallel sequencing (28). This method has investi-
gated seven binding profiles for six TFs, including three hu-
man bZIP proteins and three human Pbx–Hox complexes.
MeDReaders applied in silico approaches to predict methy-
lated and unmethylated motifs of 175 TFs by incorporat-
ing WGBS and ChIP-seq datasets, providing unified access
to most TFs that involved methylation-associated binding
events in vivo (39). We analyzed 292 structural profiles of
these 175 TFs for TFBSs with both high and low methyla-
tion levels of CpG sites derived from MeDReaders, which
includes six human cell lines/tissues and one mouse cell
line/tissue (Table 1).

Summary of total data collection

TFBSshape now provides DNA structural profiles for
TFBSs from four data sources (JASPAR, UniPROBE,
EpiSELEX-seq and MeDReaders), rather than just JAS-
PAR and UniPROBE as previously used, and contains un-
methylated and methylated DNA involved in in vitro and in
vivo binding. In total, the current version of the TFBSshape
database holds 2428 DNA structural profiles for 1900 TFs
from 39 different species, representing a 229% increase com-
pared to its original version (Table 1).

Additional shape and biophysical features for unmethylated
DNA

TFBSshape calculates DNA shape features for qualitative
and quantitative analysis to improve the mechanistic under-
standing of TF–DNA recognition. The current version of
TFBSshape analyzes nine additional shape features and one
biophysical feature of DNA for each set of TFBS sequences,
expanding the original set of four DNA shape features to
a total set of 14 features, including six intra-base pair fea-
tures (Buckle, Opening, ProT, Shear, Stagger and Stretch),
six inter-base pair features (HelT, Rise, Roll, Shift, Slide and
Tilt), MGW and EP. The feature values were predicted us-
ing our R/Bioconductor package DNAshapeR (45), where
DNA shape features are derived from data mining of tra-
jectories from all-atom Monte Carlo (MC) simulations for
DNA fragments of different nucleotide sequences ranging
12–27 base pairs in length capturing all 512 unique pen-
tamers in diverse sequence contexts (24). These MC sim-
ulations used a set of collective and internal variables (46)
and the AMBER force field (47) for DNA fragments, ex-
plicit sodium counter ions (48) and a distant-dependent sig-
moidal function to describe the solvent implicitly (49). Aver-
age values for each shape feature assigned to each of the 512
unique pentamers were calculated from equilibrated MC
simulation trajectories using the Curves algorithm (50) and
compiled into a pentamer query table for high-throughput
prediction (24) (Figure 2). These DNA shape predictions
have previously been validated using available experimen-
tal structures and hydroxyl radical cleavage measurements
(24,51). EP values were calculated at the center of the minor
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Figure 1. Schematic overview of the architecture and key functionality of TFBSshape. (A) TFBSshape CORE collects TF information derived from two
motif databases for unmethylated DNA, JASPAR (43) and UniPROBE (44), a database for in vivo binding to methylated DNA, MeDReaders (39), and
a dataset obtained from the high-throughput binding assay, EpiSELEX-seq (28). The corresponding TFBS sequences were extracted from the aforemen-
tioned data sources and stored in flat-file format. (B) TFBSshape uses DNAshapeR (45) as a DNA shape prediction engine to generate structural profiles
of TFBSs. The current version of TFBSshape predicts and analyzes 18 DNA features, including 14 features for unmethylated DNA (inter-base pair pa-
rameters HelT, Rise, Roll, Shift, Slide and Tilt, intra-base pair parameters Buckle, Opening, ProT, Shear, Stagger and Stretch, MGW and EP) and four
features for methylated DNA (HelT, MGW, ProT and Roll). Among these features, 14 of them were added in the current version of TFBSshape. (C) We
implemented the TFBSshape interface with a Model–View–Controller architectural pattern. The Model layer consists of multiple reusable and extendable
components that are responsible for specific tasks such as searching and retrieving information from the database, performing DNA shape predictions,
calculating similarities between vectors and generating statistical plots. The Controller layer handles business logics and prepares necessary data by calling
the Model components to respond to the user’s need. The View layer renders the final web page with the prediction results and presents them to the user
through the browser. The Model and View layers are independent; thus, changes to one layer will not affect the functionality of the other layer.

Table 1. Overview of the number of TFBS and TF datasets in the current version of the TFBSshape database

TFBS datasets TF datasets

Database sources Original Version Current Version Original Version Current Version

JASPAR 371 1243 371 1091
UniPROBE 368 886 361 627
MeDReaders NA 292 NA 175
EpiSELEX-seq NA 7 NA 7
Total 739 2428 732 1900
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Figure 2. Schematic illustration of the pentamer model for high-throughput prediction of DNA shape. (A) A pentamer model was used to characterize
and predict DNA shape features for either one intra-base pair parameter (e.g. MGW, in pink) or two inter-base pair parameters (e.g. Roll, in light and
dark green). The intra-base pair parameter specifies the relative location of the bases within a base pair, or in the case of MGW is defined with respect
to a base-pair plane, while the inter-base pair parameter indicates the relative location of two adjacent base pairs, or refers to a base-pair step (24). (B) A
sliding-pentamer window was used to mine the prediction results from MC simulations and, in turn, generate a query table of average DNA shape features
of each pentamer (45). (C) The pentamer query table integrated with a sliding-pentamer window can be used to predict shape features for a given DNA
sequence of any length in a high-throughput manner. For predicting intra-base pair parameters (e.g. MGW), each sliding step assigns a shape prediction
for the central base pair. For predicting inter-base pair parameters (e.g. Roll), each sliding step assigns a shape prediction for two central base-pair steps.
The overlapping values arising from two adjacent pentamers at the same nucleotide position will then be averaged. The sliding-window approach will result
in a feature vector (12).

groove within each approximate base-pair plane by solving
the nonlinear Poisson–Boltzmann equation at physiologi-
cal ionic strength using the DelPhi program (52) and a pre-
viously described protocol (15) for average DNA structures
originating from MC simulations (26) (Figure 1B). The cur-
rent version of TFBSshape provides qualitative illustrations
for the 14 features of unmethylated DNA in heat maps with
the option for downloading quantitative data for further
analysis.

Introduction of shape features for methylated DNA

TFBSshape provides DNA shape features for DNA se-
quences that contain CpG dinucleotides, and the new re-
lease offers an alternative approach to determine how the
intrinsic shape of methylated DNA affects TF binding. Re-
cently, we developed a high-throughput method, methyl-
DNAshape (37), for predicting the shape features of methy-
lated DNA, including HelT, MGW, ProT and Roll. The cur-
rent version of TFBSshape uses methyl-DNAshape (37) for
deriving shape profiles for methylated DNA sequences. The
methyl-DNAshape approach (37) uses MC simulations of
DNA fragments with methylated CpG dinucleotides em-
bedded in diverse sequence contexts. The MC simulation
protocol is identical to the one described for unmethylated
DNA fragments with the exception of 5-methylcytosine
replacing cytosine in all occurring CpG base-pair steps.
The methyl-DNAshape predictions were previously vali-
dated based on available experimental structures with CpG
methylation (37). The MC simulations and limited data for

validation restrict the current approach to CpG methylation
despite cytosine methylation in other sequence contexts in
plants (53) and at CpA dinucleotides in neurons (54,55).

The nucleotide sequences for which the new edition
of TFBSshape provides CpG methylated shape profiles
were obtained from MeDReaders (39) and EpiSELEX-seq
data (28), which are represented qualitatively as heat maps
and available as quantitative data for downloading. Since
EpiSELEX-seq datasets provide paired methylated and un-
methylated TFBS sequences, we were able to compare shape
changes between methylated and unmethylated TFBSs di-
rectly from the binding data. For those datasets that only
contain unmethylated TFBSs, such as JASPAR (43) and
UniPROBE (44), we performed in silico CpG methylation
on unmethylated DNA and predicted shape features of in
silico methylated DNA fragments. Similarly, we compared
the shape changes between these unmethylated and in silico
methylated TFBS sequences, aiming to provide insights re-
garding the effects of methylated DNA on the binding of a
TF even though in vitro or in vivo assays for this effect are
unavailable.

NEW DATABASE FEATURES

Illustration and comparison of DNA shape profiles for indi-
vidual TF dataset

TFBSshape now provides two search functions. Similar to
the first release of TFBSshape, the user can specify the
search criteria for four individual databases by selecting
‘Search TFs’ in the navigation bar on the left of the web
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Figure 3. Overview of the new TFBSshape web interface for displaying TFBS structural profiles. (A) The user can filter the TF dataset(s) of interest through
the quick or advanced search functions. (B) The responsive table lists the search results. (C) The resulting page consists of background information and
14 DNA feature profiles displayed in the sliding menu for the structural profile for MAX TFBS sequences derived from UniPROBE (UP00060). (D) The
MGW section comprises three data columns for unmethylated TFBS sequences, methylated TFBS sequences and the comparison of those two sets of
sequences. Each of the first two columns contains three illustrations, including a heat map demonstrating predicted MGW feature profiles for individual
sequences, an average heat map for all sequences and a DNA logo representing the PWM calculated using the WebLogo tool (4). The third column displays
the differences in MGW distributions between unmethylated and methylated TFBSs with respect to each nucleotide position (�MGW). The difference
between two MGW distributions in the center of the binding site is significant based on a one-sample statistical t-test.

page. In the current version of TFBSshape, a quick search
bar can be found on the top of each page of the TFBSshape
interface, allowing the user to search for any TF of interest
across all four databases (Figure 3A and B). When expand-
ing the details of the selected TF, the resulting web page dis-
plays background information about the selected TF on the
upper panel and 14 shape feature profiles in the sliding menu
on the lower panel (Figure 3C).

Each shape feature profile consists of three data columns
for unmethylated DNA, methylated DNA and a compari-
son of the results from the first two columns (Figure 3D).
The first two data columns contain three illustrations, in-

cluding shape feature heat maps for each individual se-
quence, average heat maps for each shape parameter and the
motif logo representing the PWM calculated using TFBS
sequence information. The third column demonstrates the
comparison by presenting box plots along with a statisti-
cal one-sample t-test to compare the mean of the shape
changes, for example �MGW, between the sets of unmethy-
lated and methylated TFBS sequences. This comparison de-
termines whether the shape profile is significantly altered
when introducing 5mC methylation at CpG dinucleotides
(Figure 3D).
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Figure 4. An example for a TFBSshape comparison of DNA shape preferences of two TFBS datasets using the shape alignment function. (A) The user can
select the shape features used for calculating the best alignment from the checkbox at the shape alignment interface. Before the shape alignment, the com-
parison of the homologous TFs MAX from human (MA0058.1) and MYC from mouse (MA0147.2) from JASPAR demonstrates low Pearson correlation
coefficients (PCCs) and large Euclidean distances (EDs) due to the poor alignment. The corresponding sequence motif logos with nucleotide positions
numbered according to the alignment for the two TFs are shown in the bottom panel. (B) In this example, four shape features, including HelT, MGW,
ProT and Roll, were selected. Using the chosen shape features, the best alignment was calculated and the average heat maps as well as the corresponding
PCC and ED for the four DNA shape features are shown. Compared to the initial alignment, this shape alignment is a significant improvement in terms
of PCC and ED. (C) The shape alignment tool can be used to compare the similarity between two TFs referring to different shape features. For example,
the similarity for MGW is higher than the one for HelT.

The illustrations of the first data column are derived
from the unmethylated TFBS sequences from JASPAR,
UniPROBE and EpiSELEX-seq, while the illustrations of
the second data column are derived from the methylated
TFBS sequences from EpiSELEX-seq and MeDReaders.
For EpiSELEX-seq (28), TFBSshape predicts the shape fea-
tures on paired unmethylated and methylated TFBS se-
quences. However, since JASPAR (43) and UniPROBE (44)
do not have methylated TFBS sequences for comparison,
TFBSshape performs in silico methylation on unmethy-
lated TFBS sequences and predicts their shape features. For
MeDReaders (39), TFBSshape predicts the shape features
for TFBS sequences with both high and low methylation
levels. In some cases, the CpG-containing TFBS is not the
optimal binding site, and thus, the comparison of changes
due to the methylation might be difficult to see in a box
plot when considering the entire set of TFBSs, including se-
quences without CpG dinucleotides (Supplementary Figure
S1A). Therefore, TFBSshape provides an additional box
plot that only compares the TFBS sequences with CpG and
MpG (where MpG represents a CpG dinucleotide with the
cytosines on both strands methylated at their C5 positions)
(Supplementary Figure S1B).

Shape alignment for comparison of DNA shape profiles of two
TF datasets

The original version of TFBSshape provided an interface

for comparing two TFBS shape profiles from the database.
However, with this interface, the user previously needed to
specify the alignment of the two TF motifs by setting the
reference positions for the compared datasets. This man-
ual setting had two shortcomings. First, it was inconve-
nient for the user to manually repeat the comparison pro-
cess, especially when prior knowledge was lacking or the
alignment of the two shape profiles was ambiguous. Second,
the setting only considered the alignment at the DNA se-
quence level; therefore, the mechanistic similarity in terms
of shape of two TF binding profiles might have been over-
looked. TFBSshape now offers a new function ‘Align by
Shape’ to automatically determine the best alignment based
on the selected shape features. Since the lengths and posi-
tions of compared TFBSs might vary within the sequences,
a comparison without alignment results in low Pearson cor-
relation coefficients (PCCs) and large Euclidean distances
(EDs) among all shape features (Figure 4A). The new re-
lease of TFBSshape allows the user to select the shape fea-
tures for the basis of alignment. According to the selection,
TFBSshape calculates all possible combinations of align-
ments and displays results that are represented by the best
PCC value and visualizes quantitative comparisons of av-
erage heat maps for the DNA shape features (Figure 4B).
This tool can be used not only to determine the best align-
ment but also to investigate possible binding mechanisms
through cross comparisons with similarities based on the
selection of different shape features (Figure 4C).
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Figure 5. Mutation design interface. In this example, we aimed to design mutations for a wild-type sequence ‘GTGAgCACGTGgTT’, which is bound by
the TF MAX (only bases in lower case will be mutated). (A) MAX is a member of the basic helix-loop-helix (bHLH) family of TFs that binds to the E-box
‘CACGTG’ core binding site and refines its binding specificity through structural readout of the flanking regions (23). (B) A responsive window lists the
available binding site data for MAX in TFBSshape. Here, the MAX binding profile (MA0058.1) in JASPAR is selected. (C) A detailed page lists options for
mutation design and candidates. Note that ‘GTGAtCACGTGtTT’ could be a good candidate if the user is interested in mutations that preserve structural
patterns in the flanking regions of the E-box since this mutation was previously detected as bound sequence (MA0058.1). See Supplementary Data for
more details on the algorithm.

Mutation design

The current version of TFBSshape introduces a mutation
design tool to generate DNA sequences that preserve ei-
ther DNA shape or DNA sequence features. For any given
wild-type sequence s bound by a TF, the user can spec-
ify l base pairs in lower case that are intended to be mu-
tated. If at most k base pairs are expected to be mutated,

there are
(

l
k

)
(4k − 1) possible mutations. The distance be-

tween wild-type sequence s and each mutated sequence s ′
is determined by the similarity between the two strings of
DNA sequences. This is calculated as Levenshtein distance

Lseq that counts the number of deletions, insertions or sub-
stitutions required to transform sequence s to s ′. Further-
more, to calculate DNA shape distances, shape profiles re-
garding four shape features (HelT, MGW, ProT and Roll)
or user-selected shape features for s and s ′ are first de-
rived with DNAshapeR (45). The shape features are nor-
malized between 0 and 1 using min–max normalization
with the global minimum and maximum values retrieved
from the DNAshape pentamer query table. The normal-
ized shape features are then concatenated as vector shapes
and shapes ′ , respectively. The distance between these two
vectors is represented as Euclidean distance Lshape. DNA
sequence and shape distances for all mutations are then
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sorted among all possible mutations (Supplementary Fig-
ure S2). The user can set thresholds for Lseq and Lshape to
obtain a list of desired mutations. For instance, a muta-
tion with high Lseq and low Lshape values changes predomi-
nantly DNA sequence while preserving most shape features.
Moreover, whether a mutated sequence was previously de-
tected by binding assays such as SELEX-seq and PBM will
be indicated in the resulting table on the web page, so that
the user can choose an alternative binding target of the same
TF (Figure 5A–C). This function will assist researchers to
design experiments to investigate the independent role of
base and shape readout.

Web interface

We completely redesigned the TFBSshape web interface to
meet modern web design standards. The implementation
follows the Model–View–Controller architecture pattern
for improving scalability, flexibility and extensibility (Fig-
ure 1C). The Model component handles data derived from
heterogeneous sources from MySQL databases and flat ex-
perimental data files and implements the core functional-
ity of the system, such as calculating DNA shape features
and distances between two sequences, performing statistical
analysis and generating various plots. The View component,
which is the primary user interface component, provides
multiple and synchronized views to present the informa-
tion as well as interact with the user. Using Bootstrap as a
front-end template engine in combination with HTML and
JavaScript improves the visibility and usability of our func-
tionality and enhances browsing and searching. The Model
and View components are independent and loosely coupled
with each other, thus supporting parallel development and
simplifying updating or integration of new databases. The
Controller component manages the application logic and
acts as a mediator between the Model and View compo-
nents, tightly coupling the independent components, which
ensures consistent as well as flexible architecture. Moreover,
we substantially increased the speed of displaying the struc-
tural profiles by precalculation of shape features. Finally,
we introduced semantic URLs to facilitate external links to
TFBSshape’s detailed pages of individual profiles.

CONCLUSIONS AND FUTURE EXPANSIONS

The new version of TFBSshape has greatly increased the
quantity and dimensionality of the available structural pro-
files in the database. The update includes the most recently
released TF binding data from the motif databases, JAS-
PAR 2020 (43) and UniPROBE (44), and incorporates the
methylated TFBS sequences from the in vivo methylation
database MeDReaders (39) and in vitro EpiSELEX-seq ex-
periments (28). The original four shape features in the orig-
inal version of TFBSshape (23) have been expanded to 14
features, which can be used, for example, to differentiate
DNA binding specificities that are not apparent from nu-
cleotide sequence alone. TFBSshape also introduces four
shape features for methylated DNA that can be used to un-
cover mechanistic insights into the effect of methylation on
local DNA structure in TF–DNA binding by comparing the
structural profiles of unmethylated and methylated TFBSs.

Moreover, the current version of TFBSshape provides new
functions of mutation design and shape alignment. Finally,
the new web interface provides an improved user experi-
ence through a modern web design with a Model–View–
Controller architecture. In the future, it would be useful
to include other types of DNA modification, such as 5-
hydroxymethylcytosines or different methylated forms of
bases (56–58), once the binding data and DNA shape pre-
diction methods are available. The architecture of the cur-
rent version of TFBSshape enables adding other TF motif
databases such as UniBind (59) and MethMotif (60) and
new TF–DNA binding profiles or new large-scale TF–DNA
binding assays in the future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

A collaboration of the authors with Harmen Bussemaker
on DNA methylation readout initiated some of the added
functionalities of TFBSshape. The authors thank all cur-
rent members of the Rohs laboratory for feedback and
valuable input. The authors acknowledge Lin Yang and
Tianyin Zhou for conceiving initial concepts of TFBSshape
(23) and DNAshape (24), Satyanarayan Rao for partici-
pation in planning stages of the project, contributions to
the shape alignment approach and development of methyl-
DNAshape (37), and Jinsen Li for deriving the expanded
set of 13 DNA shape features (25). The authors also thank
Luigi Manna for administrating the server hosting TFB-
Sshape, and Anthony Mathelier, Wyeth Wasserman and the
JASPER 2020 team (43) for providing data entries prior to
their publication.

FUNDING

National Institutes of Health [R01GM106056, R01HG0
03008 (in part), and R35GM130376 to R.R.]; the USC-
Taiwan Postdoctoral Fellowship Program [to T.P.C.]; the
Rose Hills Foundation [to N.M.]; the Human Fron-
tier Science Program [RGP0021/2018 to R.R.]. Fund-
ing for open access charge: National Institutes of Health
[R35GM130376].
Conflict of interest statement. None declared.

REFERENCES
1. Stormo,G.D. (2000) DNA binding sites: representation and

discovery. Bioinformatics, 16, 16–23.
2. Stormo,G.D. (2013) Modeling the specificity of protein–DNA

interactions. Quant. Biol., 1, 115–130.
3. Schneider,T.D. and Stephens,R.M. (1990) Sequence logos: a new way

to display consensus sequences. Nucleic Acids Res., 18, 6097–6100.
4. Crooks,G.E., Hon,G., Chandonia,J.M. and Brenner,S.E. (2004)

WebLogo: a sequence logo generator. Genome Res., 14, 1188–1190.
5. Benos,P.V., Bulyk,M.L. and Stormo,G.D. (2002) Additivity in

protein–DNA interactions: how good an approximation is it? Nucleic
Acids Res., 30, 4442–4451.

6. Eggeling,R., Roos,T., Myllymaki,P. and Grosse,I. (2015) Inferring
intra-motif dependencies of DNA binding sites from ChIP-seq data.
BMC Bioinformatics, 16, 375.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article-abstract/doi/10.1093/nar/gkz970/5609530 by guest on 04 N

ovem
ber 2019

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkz970#supplementary-data


Nucleic Acids Research, 2019 9

7. Sharon,E., Lubliner,S. and Segal,E. (2008) A feature-based approach
to modeling protein–DNA interactions. PLoS Comput. Biol., 4,
e1000154.

8. Kahara,J. and Lahdesmaki,H. (2013) Evaluating a linear k-mer
model for protein–DNA interactions using high-throughput SELEX
data. BMC Bioinformatics, 14(Suppl. 10), S2.

9. Annala,M., Laurila,K., Lahdesmaki,H. and Nykter,M. (2011) A
linear model for transcription factor binding affinity prediction in
protein binding microarrays. PLoS One, 6, e20059.

10. Zhao,Y., Ruan,S., Pandey,M. and Stormo,G.D. (2012) Improved
models for transcription factor binding site identification using
nonindependent interactions. Genetics, 191, 781–790.

11. Siddharthan,R. (2010) Dinucleotide weight matrices for predicting
transcription factor binding sites: generalizing the position weight
matrix. PLoS One, 5, e9722.

12. Zhou,T., Shen,N., Yang,L., Abe,N., Horton,J., Mann,R.S.,
Bussemaker,H.J., Gordân,R. and Rohs,R. (2015) Quantitative
modeling of transcription factor binding specificities using DNA
shape. Proc. Natl. Acad. Sci. U.S.A., 112, 4654–4659.

13. Yang,L., Orenstein,Y., Jolma,A., Yin,Y., Taipale,J., Shamir,R. and
Rohs,R. (2017) Transcription factor family-specific DNA shape
readout revealed by quantitative specificity models. Mol. Syst. Biol.,
13, 910.

14. Gordân,R., Shen,N., Dror,I., Zhou,T., Horton,J., Rohs,R. and
Bulyk,M.L. (2013) Genomic regions flanking E-box binding sites
influence DNA binding specificity of bHLH transcription factors
through DNA shape. Cell Rep., 3, 1093–1104.

15. Rohs,R., West,S.M., Sosinsky,A., Liu,P., Mann,R.S. and Honig,B.
(2009) The role of DNA shape in protein–DNA recognition. Nature,
461, 1248–1253.

16. Joshi,R., Passner,J.M., Rohs,R., Jain,R., Sosinsky,A.,
Crickmore,M.A., Jacob,V., Aggarwal,A.K., Honig,B. and Mann,R.S.
(2007) Functional specificity of a Hox protein mediated by the
recognition of minor groove structure. Cell, 131, 530–543.

17. Rohs,R., Jin,X., West,S.M., Joshi,R., Honig,B. and Mann,R.S.
(2010) Origins of specificity in protein–DNA recognition. Annu. Rev.
Biochem., 79, 233–269.

18. Peng,P.C. and Sinha,S. (2016) Quantitative modeling of gene
expression using DNA shape features of binding sites. Nucleic Acids
Res., 44, e120.

19. Crocker,J., Abe,N., Rinaldi,L., McGregor,A.P., Frankel,N., Wang,S.,
Alsawadi,A., Valenti,P., Plaza,S., Payre,F. et al. (2015) Low affinity
binding site clusters confer hox specificity and regulatory robustness.
Cell, 160, 191–203.

20. Crocker,J. and Stern,D.L. (2017) Functional regulatory evolution
outside of the minimal even-skipped stripe 2 enhancer. Development,
144, 3095–3101.

21. Pal,S., Hoinka,J. and Przytycka,T.M. (2019) Co-SELECT reveals
sequence non-specific contribution of DNA shape to transcription
factor binding in vitro. Nucleic Acids Res., 47, 6632–6641.

22. Samee,M.A.H., Bruneau,B.G. and Pollard,K.S. (2019) A de novo
shape motif discovery algorithm reveals preferences of transcription
factors for DNA shape beyond sequence motifs. Cell Syst., 8, 27–42.

23. Yang,L., Zhou,T., Dror,I., Mathelier,A., Wasserman,W.W.,
Gordân,R. and Rohs,R. (2014) TFBSshape: a motif database for
DNA shape features of transcription factor binding sites. Nucleic
Acids Res., 42, D148–D155.

24. Zhou,T., Yang,L., Lu,Y., Dror,I., Dantas Machado,A.C., Ghane,T.,
Di Felice,R. and Rohs,R. (2013) DNAshape: a method for the
high-throughput prediction of DNA structural features on a genomic
scale. Nucleic Acids Res., 41, W56–W62.

25. Li,J., Sagendorf,J.M., Chiu,T.P., Pasi,M., Perez,A. and Rohs,R.
(2017) Expanding the repertoire of DNA shape features for
genome-scale studies of transcription factor binding. Nucleic Acids
Res., 45, 12877–12887.

26. Chiu,T.P., Rao,S., Mann,R.S., Honig,B. and Rohs,R. (2017)
Genome-wide prediction of minor-groove electrostatic potential
enables biophysical modeling of protein–DNA binding. Nucleic Acids
Res., 45, 12565–12576.

27. Mathelier,A., Xin,B., Chiu,T.P., Yang,L., Rohs,R. and
Wasserman,W.W. (2016) DNA shape features improve transcription
factor binding site predictions in vivo. Cell Syst., 3, 278–286.

28. Kribelbauer,J.F., Laptenko,O., Chen,S., Martini,G.D.,
Freed-Pastor,W.A., Prives,C., Mann,R.S. and Bussemaker,H.J.

(2017) Quantitative analysis of the DNA methylation sensitivity of
transcription factor complexes. Cell Rep., 19, 2383–2395.

29. Yin,Y., Morgunova,E., Jolma,A., Kaasinen,E., Sahu,B.,
Khund-Sayeed,S., Das,P.K., Kivioja,T., Dave,K., Zhong,F. et al.
(2017) Impact of cytosine methylation on DNA binding specificities
of human transcription factors. Science, 356, eaaj2239.

30. Mann,I.K., Chatterjee,R., Zhao,J., He,X., Weirauch,M.T.,
Hughes,T.R. and Vinson,C. (2013) CG methylated microarrays
identify a novel methylated sequence bound by the CEBPB|ATF4
heterodimer that is active in vivo. Genome Res., 23, 988–997.

31. Tillo,D., Ray,S., Syed,K.S., Gaylor,M.R., He,X., Wang,J., Assad,N.,
Durell,S.R., Porollo,A., Weirauch,M.T. et al. (2017) The
Epstein-Barr virus B-ZIP protein Zta recognizes specific DNA
sequences containing 5-methylcytosine and 5-hydroxymethylcytosine.
Biochemistry, 56, 6200–6210.

32. Zuo,Z., Roy,B., Chang,Y.K., Granas,D. and Stormo,G.D. (2017)
Measuring quantitative effects of methylation on transcription
factor–DNA binding affinity. Sci. Adv., 3, eaao1799.

33. Hu,S., Wan,J., Su,Y., Song,Q., Zeng,Y., Nguyen,H.N., Shin,J.,
Cox,E., Rho,H.S., Woodard,C. et al. (2013) DNA methylation
presents distinct binding sites for human transcription factors. eLife,
2, e00726.

34. O’Malley,R.C., Huang,S.C., Song,L., Lewsey,M.G., Bartlett,A.,
Nery,J.R., Galli,M., Gallavotti,A. and Ecker,J.R. (2016) Cistrome
and epicistrome features shape the regulatory DNA landscape. Cell,
165, 1280–1292.

35. Baylin,S.B. and Jones,P.A. (2011) A decade of exploring the cancer
epigenome––biological and translational implications. Nat. Rev.
Cancer, 11, 726–734.

36. Dantas Machado,A.C., Zhou,T., Rao,S., Goel,P., Rastogi,C.,
Lazarovici,A., Bussemaker,H.J. and Rohs,R. (2015) Evolving insights
on how cytosine methylation affects protein–DNA binding. Brief.
Funct. Genomics, 14, 61–73.

37. Rao,S., Chiu,T.P., Kribelbauer,J.F., Mann,R.S., Bussemaker,H.J. and
Rohs,R. (2018) Systematic prediction of DNA shape changes due to
CpG methylation explains epigenetic effects on protein–DNA
binding. Epigenet. Chromatin, 11, 6.

38. Lazarovici,A., Zhou,T., Shafer,A., Dantas Machado,A.C.,
Riley,T.R., Sandstrom,R., Sabo,P.J., Lu,Y., Rohs,R.,
Stamatoyannopoulos,J.A. et al. (2013) Probing DNA shape and
methylation state on a genomic scale with DNase I. Proc. Natl. Acad.
Sci. U.S.A., 110, 6376–6381.

39. Wang,G., Luo,X., Wang,J., Wan,J., Xia,S., Zhu,H., Qian,J. and
Wang,Y. (2018) MeDReaders: a database for transcription factors
that bind to methylated DNA. Nucleic Acids Res., 46, D146–D151.

40. Slattery,M., Zhou,T., Yang,L., Dantas Machado,A.C., Gordân,R.
and Rohs,R. (2014) Absence of a simple code: how transcription
factors read the genome. Trends Biochem. Sci., 39, 381–399.

41. Wang,X., Zhou,T., Wunderlich,Z., Maurano,M.T., DePace,A.H.,
Nuzhdin,S.V. and Rohs,R. (2018) Analysis of Genetic Variation
Indicates DNA Shape Involvement in Purifying Selection. Mol. Biol.
Evol., 35, 1958–1967.

42. Al-Zyoud,W.A., Hynson,R.M., Ganuelas,L.A., Coster,A.C.,
Duff,A.P., Baker,M.A., Stewart,A.G., Giannoulatou,E., Ho,J.W.,
Gaus,K. et al. (2016) Binding of transcription factor GabR to DNA
requires recognition of DNA shape at a location distinct from its
cognate binding site. Nucleic Acids Res., 44, 1411–1420.

43. Fornes,O., Castro-Mondragon,J.A., Khan,A., van der Lee,R.,
Zhang,X., Richmond,P.A., Modi,B.P., Correard,S., Gheorghe,M.,
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