## SUPPLEMENTARY MATERIAL

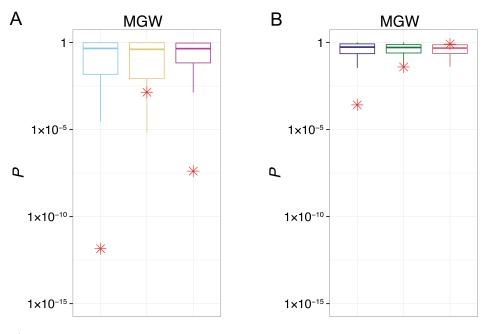
## Analysis of Genetic Variation Indicates DNA Shape Involvement in Purifying Selection

Xiaofei Wang<sup>1,#</sup>, Tianyin Zhou<sup>1,#,&,\*</sup>, Zeba Wunderlich<sup>2</sup>, Matthew T. Maurano<sup>3</sup>, Angela H. DePace<sup>4</sup>, Sergey V. Nuzhdin<sup>1</sup>, and Remo Rohs<sup>1,5,\*</sup>

<sup>1</sup>Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA

<sup>2</sup>Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA

<sup>3</sup>Institute for Systems Genetics, New York University Medical Center, New York, NY 10016, USA


<sup>4</sup>Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA

<sup>5</sup>Departments of Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA

<sup>&</sup>Present address: Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA

<sup>#</sup>These authors contributed equally to this work.

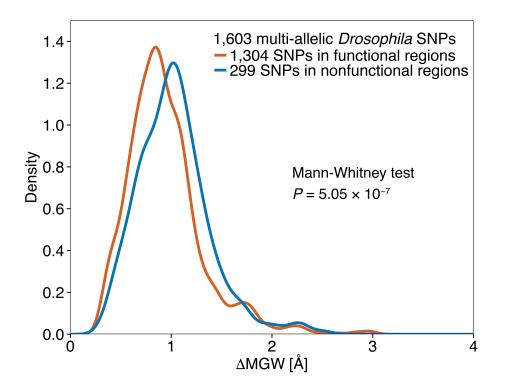
\*Corresponding authors: tianyinz@alumni.usc.edu (T.Z.) and rohs@usc.edu (R.R.)



SNPs without imbalance vs. strongly imbalanced SNPs

SNPs without imbalance vs. weakly imbalanced SNPs

Strongly imbalanced SNPs vs. weakly imbalanced SNPs


SNPs in functional regions vs. SNPs in nonfunctional regions

SNPs with high MAF vs. SNPs with low MAF in functional region

SNPs with high MAF vs. SNPs with low MAF in nonfunctional region

Supplementary Fig. S1. Boxplots for Mann-Whitney *P*-values in shuffling tests.

All of the Mann-Whitney tests shown in **Fig. 3** and **Fig. 5** were repeated by using 1,000 arbitrarily shuffled MGW predictions. Base-10 logarithms of the corresponding 1,000 Mann-Whitney *P*-values were plotted with box plots. Mann-Whitney *P*-values obtained by using DNAshape-derived MGW patterns are marked with a red asterisk. Tests for A) human and B) *Drosophila* data.



Supplementary Fig. S2. Distribution of  $\Delta$ MGW values for SNPs in functional and nonfunctional regions, obtained by using DNAshape-derived MGW in multi-allelic analysis. Compared to the distribution for functional regions (red plot), the distribution for nonfunctional regions (blue plot) was significantly shifted towards the right. This trend indicates that the change in MGW values induced by SNPs in nonfunctional regions. Sample sizes for all groups are listed in the legend.

| TF                | Symbol  | DNA binding domain | Regulatory class   |
|-------------------|---------|--------------------|--------------------|
| Bicoid            | bcd     | homeodomain        | A/P Maternal       |
| Caudal            | cad     | homeodomain        | A/P Maternal       |
| forkhead          | fkh     | forkhead domain    | A/P Zygo gap/term  |
| giant             | gt      | b-zip domain       | A/P Zygo gap/term  |
| huckebein         | hkb     | TFIIIA Zn finger   | A/P Zygo gap/term  |
| hunchback         | hb      | TFIIIA Zn finger   | A/P Zygo gap/term  |
| knirps            | kni     | receptor Zn finger | A/P Zygo gap/term  |
| knirps like       | knil    | receptor Zn finger | A/P Zygo gap/term  |
| Kruppel           | Kr      | TFIIIA Zn finger   | A/P Zygo gap/term  |
| orthodenticle     | OC      | homeodomain        | A/P Zygo-gap/term  |
| tailless          | tll     | receptor Zn finger | A/P Zygo-gap/term  |
| Dichaete          | D       | HMG/SOX class      | A/P Zygo-pair rule |
| even skipped      | eve     | homeodomain        | A/P Zygo-pair rule |
| ftz               | ftz     | homeodomain        | A/P Zygo-pair rule |
| hairy             | h       | bHLH               | A/P Zygo-pair rule |
| odd paired        | ора     | TFIIIA Zn finger   | A/P Zygo-pair rule |
| paired            | prd     | homeo & Prd domain | A/P Zygo-pair rule |
| runt              | run     | runt domain        | A/P Zygo-pair rule |
| sloppy paired 1   | slp1    | forkhead domain    | A/P Zygo-pair rule |
| sloppy paired 2   | slp2    | forkhead domain    | A/P Zygo-pair rule |
| Stat92E           | Stat92E | Stat domain        | A/P Zygo-pair rule |
| sis of bowl & odd | sob     | Zn finger          | A/P Zygo-pair rule |
| odd-skipped       | odd     | Zn finger          | A/P Zygo-pair rule |
| bowl              | bowl    | Zn finger          | A/P Zygo-pair rule |
| Daughterless      | da      | bHLH               | D/V Maternal       |
| dorsal            | dl      | NFkB/rel           | D/V Maternal       |
| brinker           | brk     | novel              | D/V Zygo           |
| Mad               | Mad     | SMAD-MH1           | D/V Zygo           |
| Medea             | Med     | SMAD-MH1           | D/V Zygo           |
| schnurri          | shn     | TFIIIA Zn finger   | D/V Zygo           |
| snail             | sna     | TFIIIA Zn finger   | D/V Zygo           |
| twist             | twi     | bHLH               | D/V Zygo           |
| zerknult 1        | zen 1   | homeodomain        | D/V Zygo           |
| zerknult 2        | zen 2   | homeodomain        | D/V Zygo           |

## Supplementary Table 1. TFs used to determine functional regions.