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Abstract

Motivation: Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines of evi-

dence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the

width of the minor groove, the relative orientations of adjacent base pairs, etc. Several methods

have been developed to jointly account for DNA sequence and shape properties in predicting TF

binding affinity. However, a limitation of these methods is that they typically require a training set

of aligned TF binding sites.

Results: We describe a sequenceþ shape kernel that leverages DNA sequence and shape informa-

tion to better understand protein-DNA binding preference and affinity. This kernel extends an exist-

ing class of k-mer based sequence kernels, based on the recently described di-mismatch kernel.

Using three in vitro benchmark datasets, derived from universal protein binding microarrays

(uPBMs), genomic context PBMs (gcPBMs) and SELEX-seq data, we demonstrate that incorporat-

ing DNA shape information improves our ability to predict protein-DNA binding affinity. In particu-

lar, we observe that (i) the k-spectrumþ shape model performs better than the classical k-spectrum

kernel, particularly for small k values; (ii) the di-mismatch kernel performs better than the k-mer

kernel, for larger k; and (iii) the di-mismatchþ shape kernel performs better than the di-mismatch

kernel for intermediate k values.

Availability and implementation: The software is available at

https://bitbucket.org/wenxiu/sequence-shape.git.

Contact: rohs@usc.edu or william-noble@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Modeling transcription factor (TF) binding affinity and predicting

TF binding sites are important for annotating and investigating the

function of cis-regulatory elements. In the past decade, the develop-

ment of chromatin immunoprecipitation coupled with high-

throughput sequencing (ChIP-seq, Barski et al., 2007; Johnson et al.,

2007; Robertson et al., 2007), protein binding microarrays (PBMs,

Berger et al., 2006) and systematic evolution of ligands by exponen-

tial enrichment coupled with high-throughput sequencing (SELEX-

seq, Jolma et al., 2010; Slattery et al., 2011; Zhao et al., 2009;

Zykovich et al., 2009) has provided high-resolution TF binding

datasets both in vivo and in vitro. However, despite the increasingly

large collection of such datasets, our ability to predict where a given

TF binds to genomic DNAs is still imperfect.
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One important challenge associated with TF binding prediction

is how to properly model combinatorial binding that involves mul-

tiple TFs or the effects of local chromatin architecture. Recent stud-

ies have shown that the interaction of the TF with co-binding factors

(Lemon and Tjian, 2000; Slattery et al., 2011) and local chromatin

architecture (Boyle et al., 2011; Dror et al., 2015) affects TF binding

to target sites. Hence, computational methods that explicitly model

cis-regulatory modules (Kato et al., 2004; Zhou and Wong, 2004)

and local chromatin accessibility (Chen et al., 2010; Hesselberth

et al., 2009) have been developed to address these issues.

However, as evidenced by our inability to predict in vitro binding

derived from high-throughput assays such as PBMs or SELEX-seq

experiments, combinatorial factors are not the only culprit. A second

challenge lies in building computationally tractable, physically plausible

models. For example, commonly used position weight matrix (PWM)

methods depend on correctly aligned DNA sequences and make the un-

realistic assumption that each nucleotide binds to the TF independently

of one another. Accordingly, a variety of methods have been proposed

that attempt to expand this approximation (Barash et al., 2003; Sharon

et al., 2008; Zhao et al., 2012; Zhou and Liu, 2004).

Dependencies between nucleotide positions in a TF binding site

can be explicitly encoded through k-mers, for instance dinucleotides

or trinucleotides (Gordân et al., 2013; Zhao et al., 2012). On the other

hand, because stacking interactions between adjacent base pairs give

rise to three-dimensional DNA structure, DNA shape features repre-

sent an alternative approach for encoding nucleotide dependencies im-

plicitly (Zhou et al., 2015). Recent evidence suggests that a crucial

aspect of TF binding can be explained based on the DNA shape of se-

lected targeted sites (Rohs et al., 2009). Local structural features of the

double helix, such as minor groove width (MGW), roll, propeller twist

(ProT) and helix twist (HelT), have been proven to greatly affect TF

binding (Zhou et al., 2015). Therefore, whereas traditional TF binding

prediction takes as input only the primary nucleotide sequence, im-

proved performance can be obtained by taking into account aspects of

the DNA shape (Gordân et al., 2013; Levo et al., 2015; Zhou et al.,

2015). This approach has the potential to significantly improve our

ability to predictively model TF-DNA interactions in vitro (Abe et al.,

2015; Yang et al., 2017) and in vivo (Mathelier et al., 2016).

In this study, we developed a kernel-based regression and classi-

fication framework that enables accurate and efficient modeling and

prediction of TF-DNA binding affinities. One of the most compel-

ling motivations for using kernel functions is that kernels can be

defined over arbitrary types of heterogeneous objects, such as pairs

of vectors, discrete strings of variable length, graphs, nodes within

graphs, trees, etc. (reviewed in Schoelkopf et al., 2004). In our task,

we used kernel functions to measure similarity between DNA se-

quences and between local DNA shape features, simultaneously. We

propose two shape-augmented kernel functions. One is the spec-

trumþ shape kernel (Section 2.2), which is a natural extension of

the classic k-mer spectrum kernel (Leslie et al., 2002). The other is a

di-mismatchþ shape kernel (Section 2.4), which is built upon the

recently developed di-mismatch kernel (Agius et al., 2010; Arvey

et al., 2012) and encodes both nucleotide sequence degeneracy and

DNA shape readout.

We used these kernels in regression models, applied to both uni-

versal PBM (uPBM) and genomic-context PBM (gcPBM) data

derived from a large collection of human and mouse TFs (Zhou

et al., 2015). Our results suggest that adding shape information

substantially improved our TF binding prediction accuracies.

Furthermore, we applied our di-mismatchþ shape kernel in a classi-

fication setting and successfully distinguished binding sites of two

homologous Hox TFs using SELEX-seq data (Abe et al., 2015). We

thus found that our shape-augmented model accurately detected

subtle but important differences in local DNA shape conformations.

2 Approach—kernel methods

In this study we devised and evaluated several kernel methods for

building quantitative models of TF binding affinity. In each case, we

consider the following problem. Suppose we are given a collection

of triples q1; x1; y1ð Þ; . . . ; qn; xn; ynð Þ, where qi is a DNA sequence of

length w, xi contains information about the DNA shape conform-

ation of qi, and yi is either a real number that indicates the relative

strength of binding of a particular TF to qi (in a regression setting)

or a binary indicator that the TF either binds to the sequence or does

not bind (in a classification setting). Our goal is to build a predictive

model f �ð Þ such that f qi; xið Þ ¼ yi. We consider a variety of kernel

methods for projecting either qi or qi and xi into a vector space suit-

able for a classical regression or classification algorithm (Fig. 1).

2.1 Spectrum kernel
A simple and widely used kernel for representing biological se-

quences is the spectrum kernel (Leslie et al., 2002). This kernel is

defined over an n-dimensional feature space, where n is the number

of unique k-mers in the dataset. Note that, due to the reverse com-

plementarity of DNA sequences, n ¼ 4k=2 if k is odd and

n ¼ 4k þ 4k=2
� �

=2 otherwise (Supplementary Table S1). Each fea-

ture corresponds to a unique string of length k, and the feature val-

ues are counts of the number of times the given string occurs within

the given DNA sequence. The kernel is a scalar product in this fea-

ture space, which can be computed efficiently using several different

data structures (Leslie et al., 2002; Vishwanathan and Smola, 2003).

The hyperparameter k determines the dimensionality of the feature

space. An important characteristic of the spectrum kernel is that it is

compositional rather than positional; i.e. the position of the k-mer

within the given sequence has no effect on the embedding. The spec-

trum kernel was originally described for protein homology detection

(Leslie et al., 2002), but has been used for a variety of DNA-based

classification and regression tasks, including predicting nucleo-

some positioning (Peckham et al., 2007) and splice site prediction

(Sonnenburg et al., 2007).

Fig. 1. e-Support Vector Regression (SVR) framework for the alignment-free modeling of TF binding
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2.2 Spectrum 1 shape kernel
Because we know that TF binding is mediated in part by the shape of

the DNA binding site, we incorporated local DNA shape properties

into our prediction models. Specifically, we considered four DNA

shape features: MGW, Roll, ProT and HelT. These features were

derived from Monte Carlo simulations using a previously described

pentamer model (Chiu et al., 2016; Zhou et al., 2013). The MGW and

ProT features are defined at each nucleotide position, whereas Roll and

HelT define translations and rotations between two adjacent nucleo-

tides. Thus, a pentamer contributes one MGW value and one ProT

value at the central nucleotide and two Roll values and two HelT val-

ues at the two central dinucleotide pairs (Supplementary Note S1).

To incorporate DNA shape information into the spectrum ker-

nel, we developed a spectrumþ shape kernel. This kernel is defined

over a 3þ 4kð Þ � n-dimensional feature space (Supplementary

Table S1). The first n features are defined over the n unique k-mer

sequences in the same manner as described for the classic spectrum

k-mer kernel. The remaining features capture the four corresponding

shape properties. Consider MGW as an example. For each unique k-

mer, we find all its occurrences within the given DNA sequence, and

we extract the k-mer sequences plus 2 bp flanking sequences on both

sides. If the k-mer appears in the beginning or at the end of the given

DNA sequence, then we add ‘NN’ to its 50 and 30 flanks to make it

of length kþ4. Then we calculate the average MGW values over all

the extracted substrings of length kþ4. Since each pentamer con-

tributes one MGW value, each kþ 4ð Þ-mer will contribute k MGW

values. Therefore, we have a total of kn features defined for MGW

shape information. In this way, we can define kn features each for

MGW and ProT, and kþ 1ð Þ � n features each for Roll and HelT.

Note that our spectrumþ shape kernel differs from the se-

quenceþ shape model used in Zhou et al. (2015). Our model is com-

positional and hence can be applied to full set of unaligned DNA

sequences. The Zhou model, in contrast, is positional and hence re-

quires pre-alignment of the TF binding sites and was applied to a

subset of preprocessed probe sequences (Supplementary Note S2.1,

Supplementary Table S2). This requirement used in our previous

studies (Abe et al., 2015; Yang et al., 2017; Zhou et al., 2015) repre-

sents a limitation that restricted us from analyzing data that could

not be aligned. Overcoming this limitation is particularly important

for low affinity TF binding (Crocker et al., 2015) or binding site

sampling during the search process (Dror et al., 2016). Furthermore,

the positional kernel in the Zhou model has much higher dimension

than our compositional model, thus is less computationally efficient

(Supplementary Note S2.2, Supplementary Table S3).

2.3 Di-mismatch kernel
Subsequent to the spectrum kernel, a variety of more complex and

more powerful DNA kernels have been developed. For example, the

mismatch kernel generalizes the spectrum kernel by relaxing the

matching function on substrings (Leslie et al., 2003). In the mis-

match kernel, a k-mer is considered to occur at a specific position

within the sequence q if the k-mer matches q with up to m mis-

matches at that position. A more recent alternative generalization,

the di-mismatch kernel, uses a matching function that counts the

number of matching dinucleotides in the two k-mers (Agius et al.,

2010). Like the spectrum kernel, only exact matches between di-

nucleotides are considered; however, a second hyper-parameter

m specifies a threshold so that the match score is set to zero if the

number of matching dinucleotides falls below k�m� 1. Precisely,

we let f/igi¼1...n be the set of unique k-mers that occur in a

large set of training sequences. Then, given a training sequence q of

length w, we define the set of substrings of length k in q to be

fqj ¼ q j; jþ k� 1ð Þgj¼1...w�kþ1. In this setting, the DNA sequence q

may be represented by a feature vector q q;/1ð Þ; . . . ;q q;/nð Þð Þ;
where q q;/ið Þ ¼

Pw�kþ1
j¼1 c k;mð Þ1 /i; qj

� �
and the value c k;mð Þ1 /i; qj

� �
is the di-mismatch score between two k-mers, which counts the

number of matching dinucleotides between /i and qj, i.e.

c k;mð Þ1 /i;qj

� �
¼
Xk�1

‘¼1

d /‘
i ; q

‘
j

� �
d /‘þ1

i ;q‘þ1
j

� �
;

where d �ð Þ is the Kronecker delta function. The mismatch thresh-

old m has the effect of setting the score to 0 if

c k;mð Þ1 ð/i; qjÞ < k�m� 1, i.e. the number of dinucleotide mis-

matches between /i and qj exceeds m. This threshold forces the ker-

nel to only consider highly similar sequences. The motivation for the

di-mismatch kernel is to favor k-mers with consecutive mismatches

over k-mers with non-contiguous mismatches. Previous evidence

suggests that the di-mismatch kernel yields more accurate TF bind-

ing predictions both in vitro and in vivo (Agius et al., 2010) and

helps to identify cell-type specific binding (Arvey et al., 2012).

2.4 Di-mismatch 1 shape kernel
We generalize the di-mismatch kernel by expanding the feature vec-

tor to include both DNA sequence and shape features:

q q;/1ð Þ; p1 q;/1ð Þ; . . . ; pb q;/1ð Þ;ð

� � � ;

q q;/nð Þ; p1 q;/nð Þ; . . . ;pb q;/nð ÞÞ;

where q q;/ið Þ is the previously defined di-mismatch feature func-

tion, and p1 q;/ið Þ to pb q;/ið Þ are the DNA shape feature functions

that we will introduce here.

Similar to Section 2.2, we consider the four DNA shape features:

MGW, Roll, ProT and HelT. For each k-mer /i (k � 5), the sliding

pentamer model (Zhou et al., 2013) generates MGW and ProT fea-

ture vectors of length k – 4 and Roll and HelT feature vectors of

length k – 3.

Our kernel requires that we define, for each unique k-mer /i and

t-th shape feature, a corresponding ‘canonical’ shape feature vector

si;t. A simple way to define such a feature vector is by averaging over

all possible 2-bp sequences immediately upstream and downstream.

In this case, si;t is a vector of length k for MGW and ProT, and kþ1

for Roll and HelT.

For each length-k substring qj in q, let xj;t be its t-th DNA shape

feature vector, t ¼ 1; 2; 3; 4. For the first and last two substrings, i.e.

j ¼ 1;2;w� k;w� kþ 1; xj;t can be obtained by averaging all pos-

sible 1- or 2-bp flanks; for other intermediate substrings, the DNA

shape features can be obtained directly.

Thus we define the t-th DNA shape feature function as

pt q;/ið Þ ¼
Xw�kþ1

j¼1

bt; k;mð Þ1 /i;qj

� �
;

where the shape feature similarity score bt; k;mð Þ1 /i; qj

� �
is

bt; k;mð Þ1 /i; qj

� �
¼

si;t � xj;t

jsi;tjjxj;tj
if c k;mð Þ1 /i;qj

� �
6¼ 0

0 otherwise:

8<
:

That is, the shape similarity score equals the normalized inner prod-

uct between the shape feature vectors si;t and xj;t, and we set the

Sequenceþshape kernel 3005
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score to zero if the number of dinucleotide mismatches between /i

and qj exceeds the threshold m. This generalized di-mismatch kernel

is defined over a 5n-dimensional feature space (Supplementary

Table S1).

3 Materials and methods

3.1 TF binding datasets
We used three types of in vitro datasets to evaluate and compare the

performance of the kernels described above.

The universal PBM (uPBM) data from the DREAM5 project

(Weirauch et al., 2013, GEO accession number GSE42864) consists

of unaligned 35-mer PBM probes for 66 TFs from a variety of pro-

tein families. The normalized uPBM data were downloaded from

the DREAM5 challenge website, where the data was normalized ac-

cording to the total signal intensity. Unlike in Zhou et al. (2015), we

did not align or trim the probes based on the reported motifs of the

binding sites.

The genomic context PBM (gcPBM) data are for three human

basic helix-loop-helix (bHLH) TF dimers: Mad1 (Mxd1)–Max,

Max–Max and c-Myc–Max (Mad, Max and Myc, respectively)

(Zhou et al., 2015, GEO accession number GSE59845). The gcPBM

data consists of 36-mer probes, each in its real genomic context.

The gcPBM probes were by design pre-aligned at the center using

the E-box motif sites. We used the raw probes in this study, without

any filtering for absence or multiple occurrence of E-box binding

sites.

The homeodomain (Hox) data consists of SELEX-seq data for

two Drosophila Hox proteins, Sex combs reduced (Scr) and

Antennapedia (Antp), each in complex with Extradenticle (Exd)

(Abe et al., 2015, GEO accession number GSE65073). These two

Exd-Hox dimers bind to similar consensus motifs but have distinct

DNA shape preferences. The SELEX-seq-derived 16-mers and

their TF binding affinities were obtained from Abe et al. (2015). No

further filtering using either Hox monomer or Exd-Hox heterodimer

motifs was performed. Each sequence in this dataset is associated

with a relative TF binding affinity, normalized to values ranging

from 0.0 to 1.0. For each sequence, we calculated separately

the percentiles of relative binding affinity for the Scr and Antp

bound sequences, respectively. Sequences with a relative binding

affinity less than 0.57 (median value in the Scr data) for Scr and

greater than 0.27 (the median value in the Antp data) for Antp

were labeled as Antp-specific binding sequences (‘positive’ set).

Conversely, the sequences with a relative binding affinity of less

than 0.57 for Scr and greater than 0.27 for Antp were labeled as Scr-

specific binding sequences (‘negative’ set). We used the resulting

sequences and binary labels (Supplementary Fig. S1) for the classifi-

cation task.

3.2 Regression experiment design
We evaluated our models separately on each TF in each dataset. To

achieve this, we randomly sampled 1000 input DNA sequences and

their relative binding affinity values to evaluate our regression mod-

els, which significantly reduced the computational cost for kernel

calculation and SVR learning.

We tested each kernel in the context of linear support vector re-

gression (e-SVR). We implemented the SVR framework with differ-

ent kernels using the Python scikit-learn/svm module, which uses

LIBSVM (http://www.csie.ntu.edu.tw/cjlin/libsvm) as its internal

SVR implementation. As a preprocessing step, all the feature vectors

were scaled to the range [0, 1].

To avoid over-fitting, we performed nested cross-validation

(CV). The inner five-fold CV performs hyperparameter grid search.

The grid includes the two SVR parameters, C and e (C from –3 to 3

in log 10 space, e¼ {0, 0.001, 0.01, 0.1, 0.2, 0.5, 1.0}). The outer

five-fold CV evaluates the performance of the best model selected

from the inner CV. We used the coefficient of determination R2 to

measure the kernel performance. The R2 measurement has been

used previously to evaluate regression performance for SELEX-seq

and PBM data (Abe et al., 2015; Zhou et al., 2015). We did not use

the Spearman correlation coefficient as the metric because the rank

transformation results in an undesirable emphasis on the unbound,

low intensity probes (Weirauch et al., 2013).

To restrict the dimensionality of the feature space and improve

computational efficiency, we selected the top 1000 features for each

model based on their R2 values for predicting binding affinities. To

avoid over-fitting, we performed this feature selection separately in

each outer CV, using the binding affinity values of the training data

only.

3.3 Classification experiment design
We used the linear support vector machine (SVM) as our training

and testing framework for the classification task.

Similar to the SVR framework, all the feature vectors were scaled

to the range [0, 1]. In addition, we performed nested CV to avoid

over-fitting. Because of the unequal numbers of positives and nega-

tives, we used stratified CV in both layers to equally split positive

and negative labels in each fold. We used the inner five-fold CV to

perform grid search for hyperparameters, which include SVM par-

ameters (C in the linear SVM model, from –3 to 3 in log10 space).

We used the outer five-fold CV to evaluate the performance of the

best model selected from the inner CV. In these classification experi-

ments, we used the area under the receiver operating characteristic

curve (AUROC) to measure the performance. As k increases, the

number of features increases exponentially. To restrict the dimen-

sion of the feature space and improve computational efficiency, we

selected the top 1000 features for each model based on their individ-

ual AUROC scores for distinguishing between sequences with posi-

tive and negative labels. As described above, this feature selection

was performed separately in each fold of the outer CV.

4 Results

We performed a series of experiments to compare and contrast the per-

formance of several kernels with respect to several benchmark datasets.

Overall, our results show the utility of taking shape information into

account, and suggest that the di-mismatchþ shape kernel yields strong

performance relative to other methods that we considered.

4.1 In uPBM data, adding shape features yields

improved performance for small k
To evaluate our models, we started with the uPBM datasets from

the DREAM5 experiment (Weirauch et al., 2013), consisting of 66

mouse TFs from various TF families. For each TF, we first evaluated

the k-spectrum model and the k-spectrumþ shape model, for every

k value from 1 to 7, comparing the R2 values between the true bind-

ing affinities and our predictions.

We observed in Figure 2 that, for small k values (k � 5), adding

shape information to the kernel leads to significantly better perform-

ance for more than 90% of the TFs (one-sided, paired Wilcoxon test,

k¼1, p¼8.4e-13; k¼2, p¼8.4e-13; k¼3, p¼1.7e-12; k¼4,

p¼1.0e-11; k¼5, p¼6.2e-10). This result agrees with previous
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reports by Zhou et al. (2015). The DNA shape information is calcu-

lated based on pentamers, and therefore captures dependencies that

may not be well represented by small k-mers. Conversely, we observed

that for larger k, the k-spectrumþ shape model under-performs the k-

spectrum model. Especially when k>5, the k-spectrumþ shape

model has larger variability in its performance and in some cases even

yields negative R2 values. The lack of improvement from the shape

features for large values of k is likely because the longer k-mers in the

k-spectrum kernel already implicitly capture DNA shape information.

Furthermore, especially for large values of k, shape-augmented kernels

map the input sequences to a very high-dimensional feature space in

which the learning task is considerably more difficult.

In addition to the aggregated performance over all 66 TFs, we

also looked at the R2 improvement for each TF and for each TF

family (Fig. 3, Supplementary Fig. S2). Taking k¼4 as an example,

we found that the 4merþ shape model led to great improvements

for all zinc fingers, bHLH, bZip and helix-turn-helix (HTH) TFs.

These observations are consistent with previous findings (Gordân

et al., 2013; Stella et al., 2010; Yang et al., 2014; Zhou et al., 2015).

Only for zinc fingers, previous studies did not detect a significant

improvement in binding specificity predictions upon the addition of

shape information (Zhou et al., 2015). Zinc fingers recognize DNA

in a modular manner with each finger binding to 3 bp, so that align-

ment of such modular sites is more ambiguous. The use of an

alignment-free approach probes the effect of shape without the un-

certainty in aligning such modular binding sites.

The spectrumþ shape kernel implemented in this study encodes

both sequence and shape information in a compositional fashion, i.e.

without respect to the absolute position of the sequence or shape fea-

ture within a given sequence. In contrast, Zhou et al. (2015) imple-

mented a positional sequenceþ shape kernel where the input

sequences are required to be aligned at the binding motif sites. We

compared our compositional kernels with the positional kernels on

the DREAM5 dataset (Supplementary Notes S2.3 and S2.4). As ex-

pected, the Zhou et al. (2015) positional kernels performed better on

aligned probe sequences; while our compositional kernls performed

better on the raw probe sequences (Supplementary Figs S4 and S5).

In both compositional and positional models, combining sequence

information and shape information contributes to the improvement of

prediction performance compared to using sequence information

alone. The advantage of our compositional approach is that it does

not require the uPBM probes to be aligned in a pre-processing step.

Taken together, the results from Zhou et al. (2015), Yang et al.

(2017) and this study confirmed that DNA shape readout plays an im-

portant role in guiding TFs to recognize their target binding sites.

4.2 The di-mismatch kernel benefits from inclusion of

shape features on uPBM datasets
Next, we compared our new di-mismatchþ shape kernel with the di-

mismatch kernel developed by Agius et al. (2010), to examine whether

adding shape information to the di-mismatch kernel improves the pre-

diction accuracy of TF binding affinities. We first implemented the di-

mismatch kernel in our SVR framework and compared its perform-

ance with the spectrum kernel using the 66 mouse TFs from the

DREAM5 data. In agreement with previous findings (Agius et al.,

2010; Arvey et al., 2012), the di-mismatch kernel consistently per-

formed better than the spectrum kernel on the uPBM DREAM5 data

for large k values (k � 5, Supplementary Fig. S3).

We then evaluated in detail (Fig. 4) the comparison between

the di-mismatch kernel with and without inclusion of shape

for different k and m parameter settings (k ¼ 3; . . . ; 8 and

m ¼ 1; . . . ;maxf2; k� 3ð Þg). We observed several trends. First, we

considered the case when we only observed one di-mismatch, i.e.

m¼1. By definition, this can only happen when a single nucleotide

mismatch occurs at the beginning or end of the k-mer sequence,

since otherwise a single mismatch in the center of the sequence leads

to two di-mismatches. In this case, adding shape features leads to

significantly improved R2 values for k¼3, 4 and 5, for the majority

of the TFs (one-sided, paired Wilcoxon test, k¼3, p¼8.8e-13;

k¼4, p¼9.5e-12; k¼5, p¼3.7e-4) and moderate improvements

for k¼6 (p¼0.02). Second, we looked at the case m¼2, where we

allow a single mismatch to occur in the middle of the k-mer se-

quences. In that case, our di-mismatchþ shape kernel performs sig-

nificantly better than the di-mismatch kernel for k¼4 and 5 (one-

sided, paired Wilcoxon test, k¼4, p¼8.4e-13; k¼5, p¼2.0e-9).
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Fig. 2. Comparison between k-spectrum and k-spectrumþ shape models on

uPBM datasets. (a) Percent of DREAM5 TF datasets that have higher R2 values

using the k-spectrumþ shape model than using the k-spectrum model.

(b) Differences of R2 values between the two models. (c) The R2 performance

scores of various k-spectrum models (dashed line) and k-spectrumþ shape

models (solid line), for k ¼ 1; . . . ; 7
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Fig. 3. R2 performance for k-spectrum model versus k-spectrumþ shape

model on uPBM dataset, k ¼ 4. (a) Scatter plot of the R2 performance values

between the two models. Each dot represents one TF, dot shape correspond-

ing to its protein family. (b) Bar plot of R2 improvements for various protein

families. Numbers in the parentheses are the number of DREAM5 TF datasets

in each TF family. The x-axis shows the differences of R2 values between the

two models. The length of the bars represents the mean of R2 differences and

the error bars mark the standard error of the mean
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However, for k � 6, the performance of the di-mismatchþ shape

model was affected by the high dimensionality of the feature space

and led to lower R2 values compared to the di-mismatch model.

Even though the di-mismatch kernel itself is able to encode se-

quence degeneracy in TF binding patterns, our results suggest that

adding pentamer-based shape information to the di-mismatch kernel

provides additional information about sequence dependencies and

shape features, hence leading to better performance for intermediate

values of k (3 � k � 5). On the other hand, when k is large

enough, adding shape information greatly increases the dimensional-

ity of the feature space, and the gain from adding shape information

does not offset the cost of the curse of dimensionality. Thus, in

this situation, the di-mismatchþ shape kernel only leads to mar-

ginal improvement or in some cases even decreases the prediction

performance.

We also looked at the R2 improvements for different TF fami-

lies between the di-mismatch model and the di-mismatchþ shape

model (Fig. 5, Supplementary Fig. S6). For instance, in Figure 5

where k¼4 and m¼2, we observed that similar to Figure 3, add-

ing shape features led to substantial improvements in R2 values for

various zinc fingers, bHLH and HTH TFs. In addition, we found

that combining shape features into the di-mismatch kernel contrib-

uted to the prediction improvements for homeodomain TFs. This

observation is consistent with previous reports that specific homeo-

domain residues play key roles in recognizing DNA binding sites

through shape readout (Dror et al., 2014). For T-box TFs, since

T-box proteins can bind to the DNA not only in a monomeric

manner but also in dimeric combinations with various spacing and

orientation patterns (Jolma et al., 2013), our results suggest that

the di-mismatchþ shape model might help in recognizing the

flexibility in the event of combinatorial TF binding. Generally, our

results seem to indicate that the di-mismatch kernel better

describes binding sites with spacers, for instance in the center of

dimeric binding targets.

4.3 The di-mismatch 1 shape model can accurately

predict TF binding in various experimental platforms
To investigate the extent to which our conclusions generalize be-

yond uPBM data, we also examined the performance of our shape-

augmented models on a collection of gcPBM data for three human

bHLH TFs (Mad, Max, Myc). In agreement with our observations

in the mouse uPBM DREAM5 dataset, the k-spectrumþ shape

model outperformed the k-spectrum model for k<5 for all three

gcPBM datasets (Fig. 6). For larger values of k, although the per-

formance of the k-spectrumþ shape model begins to drop, its R2

values are still very close to the ones for the k-spectrum model, for

two out of three TFs. Except for the Max dataset, the best R2 per-

formance for each of the other two TF gcPBM datasets was achieved

by the di-mismatchþ shape model.
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Fig. 4. Comparison between di-mismatch and di-mismatchþ shape models

on uPBM datasets. (a) Percent of DREAM5 TF datasets that have higher R2

values using the di-mismatchþ shape model than using the di-mismatch

model, for k ¼ 3; . . . ; 8 and m¼ 1. (c) Differences of R2 values between the

two models, for k ¼ 3; . . . ; 8 and m¼ 1. (e) R2 performance scores of various

di-mismatch models (dashed line) and di-mismatchþ shape models (solid

line), for k ¼ 3; . . . ; 8 and m¼1. (b, d, f) Corresponding plots for di-mismatch

paramters k ¼ 4; . . . ; 8 and m¼2
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Fig. 5. R2 performance for di-mismatch versus di-mismatchþ shape model on

uPBM dataset, k¼4 and m¼2. (a) Scatter plot of the R2 performance values

between the two models. Each dot represents one TF, dot shape correspond-

ing to its protein family. (b) Bar plot of R2 improvements for various protein

families. Numbers in the parentheses are the number of DREAM5 TFs in each

TF family. The x-axis shows the differences of R2 values between the two

models. The lengths of the bars represent the mean of R2 differences and the

error bars indicate the standard error of the mean
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Similarly, we observed that the di-mismatchþ shape model out-

performed the di-mismatch model for almost all k values. The bene-

fit of adding shape information is substantial for smaller k values

but tends to be marginal for large k values (k>5). This might be

due to the definition of the shape parameters, which require at least

pentamers for the calculation of MGW.

The gcPBM datasets are of higher quality than the uPBM data-

sets, because the gcPBM data contain less positional bias and pro-

vides information on the genomic flanking regions. Therefore, we

observed much higher R2 values for all the models in the human

gcPBM datasets as compared to the ones in mouse DREAM5 uPBM

datasets. The highest R2 value is greater than 0.8 for the Mad data.

Furthermore, it has previously been shown that the flanking se-

quences of the 6-bp E-box core motif contribute to the binding of

bHLH TFs (Gordân et al., 2013). Consistent with this observation,

we found that longer k-mers (k � 6) in both k-spectrumþ shape and

di-mismatchþ shape models continue to yield high R2 prediction

accuracies for all three bHLH TFs.

4.4 Using DNA shape information improves the ability

to distinguish between Scr and Antp binding sites
In addition to testing our shape-augmented models in a regression

setting on PBM datasets, we also investigated the performance of

our kernels in a classification setting to distinguish motif binding

sites between two homologous Hox proteins in presence of the

shared cofactor Exd. This is considered a challenging task, because

the two Hox proteins, Scr and Antp, are known to bind to a similar

consensus motif with subtle differences in the binding sites. Abe

et al. (2015) previously reported that Scr and Antp recognize distinct

DNA shape. Therefore, effectively decoding DNA shape differences

is crucial to the success of distinguishing the differential binding

events between Exd-Scr and Exd-Antp heterodimers.

As seen in Supplementary Table S4, the k-spectrumþ shape

models consistently generated higher AUROC scores for all k values.

In addition, the di-mismatchþ shape models benefited from the in-

clusion of shape information and performed better than the di-

mismatch models in most of the experiments when 3 � k � 7. The

highest prediction AUROC score of 0.9885 was achieved by the

di-mismatchþ shape model with parameters k¼6 and m¼3.

Therefore, our results demonstrate that with the assistance of DNA

shape information we can more accurately distinguish between the

binding sites of Exd-Scr and Exd-Antp heterodimers.

5 Discussion

Recent studies on DNA shape readout suggest that local DNA shape

features play an important role in DNA binding site recognition

(Rohs et al., 2009). Several computational models have been de-

veloped to incorporate DNA shape information into sequence motif

models and to use shape to improve the prediction accuracy of TF-

DNA binding models (Dror et al., 2014; Mathelier et al., 2016;

Yang et al., 2017; Zhou et al., 2015).

In this study, we present two shape-augmented models. The first

one, the k-spectrumþ shape model, is built on the classic k-spectrum

model. The second is the di-mismatchþ shape model which extends

the recently developed di-mismatch model. Unlike existing se-

quenceþ shape models (Yang et al., 2017; Zhou et al., 2015), our

new shape-augmented models are compositional, that is, they do not

require the alignment of sequences at motif binding sites. The com-

positional model is better than a positional model because a com-

positional approach allows us to perform alignment-free modeling

on all available sequences. For some TFs, we might not have a pre-

defined motif model to use in creating an alignment. Furthermore,

even with a well-defined TF motif, there might be some sites that

are transiently bound without an obvious sequence motif. Such

DNA sequence might still have shape similarities that are transiently

recognized (Dror et al., 2016) and therefore could be identified by

our models.

Previous methods treat shape features and sequence features in-

dependently, by defining the feature vector as the concatenation of

sequence features and shape features (Zhou et al., 2015). Since

shape features are derived from sequence information, simply add-

ing sequence and shape information introduces redundancies in the

feature space and may not be desirable. Our di-mismatchþ shape

kernel defines similarity between shape features conditioning on se-

quence similarity, thereby explicitly representing dependences be-

tween sequence and shape features.

One could imagine attempting to encode DNA shape features in

some alternate form of sequence kernel. In the approach adopted

here, for each unique 5-mer sequence, the DNAshape calculator gen-

erates six physically meaningful values. If we instead use a spectrum

kernel, these values would need to be combined in some fashion for

each 5-mer. A priori, it is not clear how best to carry out this com-

bination. We therefore opted to leave the features separate and

allow the machine learning system to operate in a richer feature

space.

Accordingly, adding shape features inevitably increases the

dimensionality of the feature space. To combat the curse of dimen-

sionality, we employed a straightforward feature selection proced-

ure. In addition, our SVM/SVR parameter C implicitly controls the

kernel space dimension. We expect that more sophisticated feature

selection approaches, such as incremental selection or regularizers

like LASSO (Tibshirani, 1996) or elastic net (Zou and Hastie, 2005)

could further improve our models in high-dimensional situations.

All the kernels discussed in this study encode sequence (and

shape) information into vectors of features and then use linear ker-

nels (scalar product) as the similarity score. Another possibility is to

use a Gaussian (RBF) kernel. The RBF kernel embeds the data into

(a finite subspace of) an infinite dimensional feature space, thus

allowing efficient mapping to a high-dimensional, implicit feature

space. Hence the RBF kernel might provide an alternate solution for

the high-dimensionality issues in our shape-augmented models.
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