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SI Methods
Sequence and Shape Feature Vectors. We used 1-mer, 2-mer, and
3-mer feature vectors of the form

*1-mer= ðA1;   C1;  G1;   T1; . . . ;  AL;  CL;  GL;   TLÞ

*
2-mer= ðAA1;  AC1;  AG1;  AT1; . . . ;   TGL−1;   TTL−1Þ

*
3-mer= ðAAA1;  AAC1;  AAG1;  AAT1; . . . ;   TTGL−2;   TTTL−2Þ

with lengths 4L, 16ðL− 1Þ, and 64ðL− 2Þ, respectively, where Ni,
NNi, and NNNi have a value of 1 if the particular k-mer occurs at
position i, and a value of 0 otherwise.
The prediction of each shape feature constituted a numeric vector,

*
MGW= ðMGW3;  MGW4; . . . ;  MGWL−3;  MGWL−2Þ

*
ProT= ðProT3;   ProT4; . . . ;   ProTL−3;   ProTL−2Þ

*
Roll= ðRoll2;  Roll3; . . . ;  RollL−3;  RollL−2Þ

*
HelT= ðHelT2;  HelT3; . . . ;  HelTL−3;  HelTL−2Þ

where MGWi and ProTi represent MGW and ProT, respectively,
at nucleotide position i, and Rolli and HelTi represent Roll and
HelT, respectively, of the dinucleotide between positions i and
ði+ 1Þ. Shape values at two positions of both the 5′ and 3′ ends
were unavailable because a pentamer model was used to derive
the structural features (1).
Each shape feature vector was further expanded to include

second-order shape features by adding products of the same shape
parameter at two adjacent positions. For example, the resulting

*
MGW1st+2nd vector was of the form

*
MGW1st+2nd

= ðMGW3;  MGW4; . . . ;  MGWL−3;  MGWL−2;

 MGW3 pMGW4; . . . ;  MGWL−3 pMGWL−2Þ:

The complete shape feature vector used in this study was ob-
tained by concatenating the four numeric vectors

*
MGW1st+2nd,*

ProT1st+2nd,
*

Roll1st+2nd, and
*

HelT1st+2nd.
We provide an easy-to-use tool (with source code and docu-

mentation) for computing DNA sequence and shape feature
vectors at rohslab.cmb.usc.edu/PNAS2015/.

Implementation of Support Vector Regression. We used the e-SVR
algorithm (2) implemented in the LIBSVM toolkit (3) to train
linear regression models for predicting the natural logarithm of
the PBM signal intensities (response variable) based on the en-
coded sequence and shape features. The e-SVR contains two
user-defined hyperparameters: C, the penalty factor used for
regularization; and «, the parameter in the loss function (i.e.,
maximum distance between the predicted and actual values for
which no penalty is incurred). An internal 10-fold cross-validation
was used at each step to identify the hyperparameters C and «

that yielded the best performance (i.e., lowest mean-squared
error). The hyperparameter space was manually specified as

«  ∈ f0:001;   0:01;   0:1;   0:2;   0:3;   0:4;   0:5;   0:7;   0:9;   1:0g

C  ∈ f0:001;   0:01;   0:05;   0:1;   0:5;   1;   5;   10;   50g:

The response variables were the natural logarithms of the fluores-
cence signal intensities. The performance of the different models
was evaluated and compared based on the squared Pearson cor-
relation coefficient R2 between predicted and observed values of
the response variable.

gcPBM Data. The gcPBM data for His-tagged human TF dimers,
Mad1 (Mxd1)−Max, Max−Max, and c-Myc−Max (Mad, Max,
and Myc, respectively), were generated essentially as previously
described (4). Briefly, a 4 × 180k microarray design (AMADID
041707; Agilent) was used, which contained 36-bp genomic se-
quences selected from the ChIP-seq peaks of Mad, Max, or Myc
in the HeLa S3 or K562 cell line [encyclopedia of DNA elements
(ENCODE)]. Each 36-mer was centered at a putative TF bind-
ing site for Mad, Max, or Myc (see ref. 4 for further details on
the microarray design). The 24-mer GTCTTGATTC GCTTGA-
CGCT GCTG (representing the reverse complement of a primer
to be used in the double-stranding step of the PBM assay) was
appended to each 36-bp genomic region.
Following the PBM protocol (5), a primer extension step was

performed to obtain double-stranded DNA oligonucleotides on
the microarray. Each microarray chamber was incubated with
a 2% milk blocking solution for 1 h, followed by incubations
with the protein-binding mixture for 1 h and with Alexa488-
conjugated anti-His antibody (1:20 dilution, Qiagen) for 1 h (5).
The array was gently washed and then scanned with a GenePix
4400A scanner (Molecular Devices) at 2.5-μm resolution. Data
were normalized with standard analysis scripts (5, 6). Although
this study used a previously described microarray design (4), the
experimental protocol was slightly modified. Specifically, the
milk concentration in the protein-binding mixture was increased
from 2% to 4%, to reduce the background signal and to permit
higher-quality data to be obtained (Fig. S1).
After the gcPBM data for Mad, Max, and Myc were obtained,

each dataset was filtered to remove sequences that contained
more than one putative TF binding site. For each probe on the
array, flanking regions of the central TF binding site were scanned
with the uPBM 8-mer data for Mad, Max, or Myc (7). Any probe
for which the flanking regions contained at least one 8-mer with
an enrichment score (E-score) ≥ 0.3 was removed. The E-score is
a modified form of the Wilcoxon−Mann Whitney statistic. The
E-score ranges from −0.5 (least-favored sequence) to +0.5 (most-
favored sequence). As reported previously for uPBM assays (5),
a false discovery rate of 0.01 typically corresponds to an E-score
cutoff of ∼0.32–0.36. Thus, by selecting only probes for which all
8-mers in the flanking regions had an E-score < 0.3, we ensured
that each probe contained only one Mad/Max/Myc binding site.
To ensure that each probe was centered at the Mad/Max/Myc

binding site, the 8-mer with highest E-score had to be located in
the center of the 36-mer, with the next-highest 8-mer adjacent to
it. After these filtering criteria were applied, 6,927 probes for Mad,
8,569 probes forMax, and 7,535 probes forMyc were obtained. Raw
and processed gcPBM data were submitted to the Gene Ex-
pression Omnibus (GEO) under accession number GSE59845.
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uPBM Data. This study used the uPBM data (5, 6) for 66 mouse
TFs reported by ref. 8 and used in the DREAM5 challenge.
Briefly, uPBMs contain artificial DNA sequences designed using
a de Bruijn sequence of order 10 over the {A, C, G, T} alphabet,
which ensures that all 10-bp DNA sequences are represented on
the array. Unlike gcPBM probes, there is no guarantee that a TF
binding site will occur in the center of the uPBM probe. In this
context, a bias may occur because the location of the TF binding
site within the probe affects the TF binding signal as measured
by PBM. Specifically, binding sites located close to the free DNA
end of a probe generally result in higher PBM signals than
binding sites located close to the glass slide (6). Computational
methods for training TF binding models from uPBM data either
try to learn the positional bias from the data or they use median
8-mer intensities and 8-mer E-scores (8) to average out the po-
sitional bias.
Because the goal of this study was to evaluate DNA shape-

augmented models of DNA binding specificities compared with
traditional sequence-based models, and not to train models that
can predict uPBM data, the positional bias was not explicitly
modeled. The DREAM5 uPBM data were processed with the
intent of minimizing the effect of positional bias and making the
data suitable for position-based regression models, according to
the following six steps.

i) For each of the 66 mouse TFs, we obtained the normalized
uPBM signal intensities for all probes on the array, the
8-mer E-scores derived from the uPBM data, and the best
PWM for that TF (as reported by Weirauch et al. after
analyzing PWMs obtained with 26 different algorithms) (8).

ii) For each of the 66 TFs, we scanned each uPBM probe to
identify the best PWMmatch on either the forward or reverse
strand, accounting for all of the putative sites in the 35-bp
variable probe region. The best PWM matches were used to
align the uPBM probes to each other.

iii) For each TF, the selected probes were those for which the
best PWMmatch fell at least L positions from the left end of
the probe (corresponding to the free DNA end) and at least
R positions from the right end of the scanned probe region.
Restricting the location of the TF binding site by the L and
R parameters minimized the effect of the positional bias on
the uPBM signal intensities used in the analyses. As shown
in our previous work (9), flanking DNA sequences outside
the PWM match can significantly affect TF binding and
contribute to the PBM signal. For this reason, flanking re-
gions outside the PWM match were included, as long as the
PWM match fell within the limits defined by the L and R
parameters.
Several L/R pairs (L2R12, L2R15, L2R18, L5R5, L5R10,
L5R12, L5R15, L5R18, L8R12, and L8R15) were tested.
On average, L5R10 resulted in the most accurate models
and, therefore, was chosen. However, using different L/R
pairs did not markedly change the results of the comparisons
between DNA shape-augmented models and traditional
sequence-based models of DNA binding specificities.

iv) The preceding step identified the best PWM match within
each probe, within the limits defined by the L and R param-
eters, regardless of the PWM score. In this step, any probes
for which the best PWM match did not correspond to a pu-
tative TF binding site (defined as a site containing at least
two consecutive 8-mers with uPBM E-score > 0.3) were
filtered out. This criterion is not a stringent cutoff for de-
fining TF binding sites (6, 9), but it ensures that most of the
selected probes do contain a specific TF binding site.

v) Although not common, some DNA probes on uPBMs can
contain two or more TF binding sites. In such cases, it is not
clear how much each binding site contributes to the PBM
signal. To remove such probes from consideration, the

probe region outside the central 12 bp (corresponding to
the best PWM match) was scanned. Probes that contained
a second potential binding site were filtered out.

vi) Finally, for each TF, the selected probe sequences were
trimmed to a length of T = Length(PWM) + 2L bp, to
ensure that the same amount of flanking sequence was used
for each putative TF binding site.

For one of the 66 TFs in the DREAM5 study (8), Nhlh2, none
of the DNA probes passed the filtering criteria. Therefore, this
TF was not included in further analyses.

Training and Testing on Different uPBM Array Designs. Most uPBM
analyses presented here used cross-validation on the uPBM data
obtained from a specific array design. An alternative approach for
testing shape-augmented specificity models is to train the models
on uPBM data from one array design and use them to predict the
binding data obtained from a different array design, similar to the
procedure proposed by ref. 8. The latter approach has the ad-
vantage that it can test whether the shape features capture array-
specific biases and artifacts. However, this approach can only be
applied if the data obtained using the two array designs agree
well with each other and are of similar quality.
We analyzed the uPBM data for both array designs used by ref.

8 for the 66 mouse TFs. For each TF, we computed the squared
Pearson correlation coefficient (R2) between the 8-mer E-scores
derived from the two array designs. Next, we selected the top 10
TFs (Oct1, Pit1, Prdm11, Sox3, Zkscan1, Dmrtc2, Foxo6, Nkx2-
9, Pou1f1, and Sdccag8) with the highest correlation between the
array designs (i.e., with R2 > 0.45). For each of the 10 selected
TFs, we trained specificity models on one array design (as
described above, but without performing an embedded cross-
validation). We used those models to predict the binding data for
the second array design. Data from both array designs were
processed in the same way, as described in uPBM Data above.

Differences Between gcPBM and uPBM Data. The preprocessing of
the uPBM data for the 66 mouse TFs (8) and the experimental
protocol for the generation of the gcPBM data for the human
bHLH TFs Mad, Max, and Myc yielded three differences. First,
sequences selected from the uPBM data were shorter than
gcPBM sequences; therefore, fewer positions in the flanking
regions were used in the SVR modeling. Second, the gcPBM
data did not suffer from positional bias, whereas the selected
uPBM probes might still have had some positional bias even
after the processing steps. Third, the gcPBM intensity for each
probe represented the median over six replicate measurements,
whereas the uPBM intensity for each probe corresponded to
a single measurement. Thus, it was not surprising that models
trained on gcPBM data were more accurate than models trained
on uPBM data.

Cross-Platform Testing of Shape-Augmented Models: Training the
Models on gcPBM Data and Testing Them on SELEX-seq DNA Sites.
To assess how well our PBM-trained models are able to predict
TF binding data obtained using other in vitro technologies, we
generated SELEX-seq data for one of the TFs in our study, the
human protein Max. The SELEX-seq experiment was carried out
as described previously (10, 11). Max (66 nM) was incubated with
the following randomized oligonucleotide library (at 200 nM):
GTTCAGAGTT CTACAGTCCG ACGATCTGG (N16) CCA-
GAACTCG TATGCCGTCT TCTGCTTG. The following oli-
gonucleotide was used to track the mobility of the Max−DNA
complex: ATACATAAGA TCGCATTATG TGGCTTATCA
AACCACGTGG TTTATCAAAA TAATAAGTGA TCTGT-
CATTG ATC. Sequencing was performed with an Illumina
HiSeq 2500.
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After two rounds of SELEX, we calculated the relative af-
finities of all 12-mers as described previously (10, 11). Briefly,
a fifth-order Markov model was constructed by using Round
0 sequences to predict the number of 12-mer sequences in the
initial library (10, 11). Then, the relative affinity of each 12-mer
was generated by calculating the square root of the enrichment
ratio (counts in Round 2/expected counts in Round 0 from the
Markov model).
We used our regression-based models trained on gcPBM data

to predict Max binding as measured by SELEX-seq. This task is
not trivial because the binding measurements obtained from the
two technologies are very different: The gcPBM measures TF
binding to 36-bp genomic regions centered at putative TF binding
sites, whereas SELEX-seq measures average TF binding to short
sequences (typically 6–12 bp), which might contain a TF binding
site at any position. Thus, to train our models on gcPBM data
and test them on SELEX-seq data, both data types were pre-
processed as described below.
First, we trimmed the 36-bp genomic sequences in the Max

gcPBM data to the central 10 bp. For each 10-mer obtained at
this step, we calculated its average gcPBM signal (which was used
as the response variable in the SVR analysis) as the average of the
PBM log intensity for all 36-bp probes centered at that 10-mer. To
ensure that the average 10-mer binding signal was not biased toward
specific flanking regions, we did not consider 10-mers that were
present in fewer than ten 36-bp probes. Then, we trained the se-
quence- and shape-based regression models on the set of selected
10-mers and their corresponding average gcPBM log intensities.
We processed the SELEX-seq data using a method similar to

the one described above for uPBM data, with the goal of
obtaining SELEX-seq 12-mers that contain only one putative
binding site, located in the center of the 12-mer. The putative
binding site in each SELEX 12-mer was determined by scanning
the sequence with an 8-bpMax PWMand selecting the best PWM
match.We discarded the 12-mer sequences for which the putative
binding site had a uPBM E-score < 0.3 because these sequences
were unlikely to be bound specifically by the TF of interest. After
this processing step, 12-mers centered at putative Max binding
sites were immediately included in our analyses.
To include as many SELEX-seq sequences as possible, we also

selected 12-mers in which the putative binding site was shifted
from the center of the 12-mer by 1 bp. Finally, to ensure that all
sequences used in our analyses were the same size, we trimmed
the 12-mer SELEX sequences to 10-mers by keeping only 1 bp on
each side of the putative binding site. The relative affinities of the
resulting 10-mers were calculated as the average relative affinities
of all 12-mers that were trimmed to a particular 10-mer. The
SELEX-seq data for Max were submitted to the Gene Expression
Omnibus (GEO) under accession number GSE60200.
To determine the significance of the differences in Spearman’s

rank correlation coefficients (SRCC) between 1mer+shape and
sequence-based models when trained on gcPBM data and tested
on SELEX-seq data, we used bootstrapping to generate dis-
tributions of such differences under the null hypothesis that two
models perform equally well. For each sequence-based model,
we performed the following steps. We generated 10,000 boot-
strap training samples from the gcPBM data. Next, we trained
the sequence-based model on each bootstrap sample, tested it on
the SELEX-seq data, and computed the corresponding SRCC.
Next, we computed the differences in SRCC values between the
original sequence-based model and the models trained on the
bootstrap samples, which are expected to perform equally well.
Thus, we obtained the null distribution of SRCC differences,
which we used to compute empirical P values. For each sequence-
based model we asked: Under the hull hypothesis, what is the
probability of obtaining an SRCC difference at least as extreme
as the difference between that sequence-based model and the
1mer+shape model? The computed empirical P values were: P <

0.0001 for the 1mer model, P = 0.0015 for the 1mer+2mer
model, and P = 0.0058 for the 1mer+2mer+3mer model.

Number of Parameters in k-mer-Based Regression Models. For each
nucleotide position in the TF binding sites, our k-mer models
use 4 features to encode 1-mer identity, 16 features to encode
2-mer identity, 64 features to encode 3-mer identity, and 8 fea-
tures to encode DNA shape (i.e., 4 first-order and 4 second-
order shape features). Therefore, the 1mer+shape, 1mer+2mer,
and 1mer+2mer+3mer models used a total of 12, 20, and 84
features per nucleotide position, respectively (Figs. 4A and 5A).
Simple motif models in which the parameters represent proba-
bilities of having specific nucleotides at specific positions in the
TF binding site (e.g., position-specific frequency matrices) have
only three independent parameters per position. However, in
our models, the parameters represent weights related to the
contribution of specific nucleotides to the TF binding signal. The
sum of the four weights (corresponding to nucleotides A, C, G,
and T) can be different at different positions, which is why we
use all four 1-mer features at each position in the binding site.
The k-mer features used in our regression models are not

independent of each other. In theory, the 2-mer features can
capture the contributions of 1-mers, and 3-mer features can
capture the contributions of 1-mers and 2-mers. However, using
just 2-mers or just 3-mers while training k-mer regression models
is problematic when (some of) the real contributions to the
binding affinity are due to 1-mers.
For example, assume that nucleotide A at position i in the

binding site contributes x to the TF binding signal. To capture
this contribution with a 1mer+2mer model, the regression al-
gorithm only needs to learn one weight (x) for the feature A at
position i. However, capturing this contribution using only 2-mer
features is not trivial. One possibility would be for the model to
learn a weight x/2 for the features AA at position i − 1, CA at
position i − 1, GA at position i − 1, TA at position i − 1, AA at
position i, AC at position i, AG at position i, and AT at position i.
If the important contributions at positions i − 1 and i + 1 are also
due to 1-mers, then the regression algorithm will have an even
harder time finding the correct weights for 2-mer features to
capture 1-mer effects. Thus, training models that include both
1-mers and 2-mers (or 1-mers, 2-mers, and 3-mers) is a valid ap-
proach, which we have used when reporting the numbers of
features in the main text of our manuscript. We also tested SVR
models using only 2-mer or 3-mer features; however, they per-
formed slightly worse than models using 1-mers + 2-mers or
1-mers + 2-mers + 3-mers.

Methodology for Calculation of DNA Shape Features. The Monte
Carlo sampling that underlies the DNAshape method (1) uses all-
atom simulations of DNA fragments starting from canonical
B-form conformations. The set of collective and internal variables
in the Monte Carlo sampling included 12 degrees of freedom per
nucleotide, which comprise three rigid-body translations, three
rigid-body rotations, the glycosidic torsion angle, phase and
amplitude of the sugar moiety, and two endocyclic torsion and
one bond angle in the phosphodiester backbone (12). All re-
maining endocyclic torsion and bond angles in the backbone
were sampled as dependent variables. For the thymine base, the
rotation of the thymine methyl group was used as an additional
independent variable. The sampling included an analytic chain
closure using associated Jacobians (13) and charges and atom
sizes as specified in a previously published protocol (12). The
system was neutralized with explicit sodium counter ions whose
positions were independently sampled. The solvent was de-
scribed implicitly using a sigmioidal distance-dependent di-
electric function (14). The simulation protocol and analysis
used for data generation were identical to the one previously
described (15).
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The DNA shape features were derived with our DNAshape
method based on the mining of all-atom Monte Carlo simulations
for 2,121 different DNA fragments of 12–27 bp in length (1). Using
a sliding pentamer window, shape parameters were calculated at

the central nucleotide (MGW and ProT) or two central bp steps
(Roll and HelT) using Curves (16). Average shape parameters were
then calculated for each of the unique 512 pentamers based on all
occurrences of a pentamer in our Monte Carlo-generated dataset.
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Fig. S1. High quality of experimental gcPBM data generated for this study. Comparison of the performances of the SVR-based 1mer and 1mer+shape models
with previously published gcPBM data (4) to their performances with the new gcPBM data generated for this study. Models of the same type always performed
better on the new gcPBM data. We note that the Mad TF used in this study is the Mad1 (Mxd1) protein, which is closely related to Mad2 (Mxi1).
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Fig. S2. Performances of various models on the uPBM data for 65 mouse TFs. (A) Comparison of model performances on uPBM data of 65 mouse TFs from the
DREAM5 dataset (8). Models combining sequence (1mer) with first- and second-order DNA shape features were compared with models combining sequence
and only first-order DNA shape features. (B−D) Comparison of model performances for shape-augmented models (1mer+shape) with performances for sequence-
based (B) 1mer, (C) 1mer+2mer, and (D) 1mer+2mer+3mer models in a cross-array evaluation (i.e., models were trained on one uPBM array design and then
tested on a different uPBM array design, as in ref. 8). Results are shown for 10 TFs from the DREAM5 study, chosen based on high agreement between the
uPBM data generated using the two array designs (see Training and Testing on Different uPBM Array Designs for more details). (E) Performance comparison of
the shape-only model to the sequence-only (1mer) model in a cross-array evaluation for the 10 TFs shown in B−D.
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Fig. S3. Performances of binding specificity models across experimental platforms. (A−C) Scatter plots of predicted versus observed binding site ranks, il-
lustrating the performances of the (A) 1mer+2mer, (B) 1mer+2mer+3mer, and (C) shape-only models trained on gcPBM data and tested on SELEX-seq data.
Here, higher ranks represent higher-affinity binding sites. See Fig. 3B and SI Methods for the P values of the performance comparison between the 1mer+
shape model and the sequence-based models.

Fig. S4. Performance comparison of various models for human Mad and Myc TFs. Performances of the sequence- and shape-based models for (A) Mad and (B)
Myc binding to DNA as the sample size was decreased.
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Fig. S5. SVR feature weights reveal structural mechanisms of DNA readout for bHLH and homeodomain TFs. (A−C) Structural characteristics observed in the
cocrystal structure of the ternary Max−Max/DNA complex (17) correspond, to different degrees, with the SVR feature weights derived from the 1mer+first
order shape models for (A) MGW, (B) HelT, and (C) ProT based on the gcPBM data for Max. (D) SVR feature weights for MGW derived from the 1mer+first order
shape model based on uPBM data (8) for the homeodomain TFs Oct1, Pit1, and Pou1 agree with X-ray (18), SELEX-seq (10), and uPBM (19) data. The sequence
probability matrix and MGW plot were adapted from our earlier publication (19) and compared with SVR feature weights derived in this study.
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Fig. S6. DNA shape profiles differ significantly between high- and low-affinity binding sites of the human bHLH TF Max. Using mechanically induced trapping
of molecular interactions (MITOMI), Maerkl and Quake (20) reported DNA binding affinities for specific and nonspecific target sites of the Max TF, matching
the pattern TTGnnnnGTGGGTG. We generated DNA shape profiles for these target sites with our DNAshape method (1) and compared them to the profile
of the highest-affinity site, TTGCCACGTGGGTG, based on Euclidean distances and taking all nucleotide positions of the binding site into account. Box plots
show the Euclidean distances in (A) MGW, (B) Roll, (C) ProT, and (D) HelT between the highest-affinity site and either specific (red) or nonspecific (blue) binding
sites. The top 20 and bottom 20 sites, according to binding affinity, were included in the analysis. The observed differences between specific and nonspecific
sites are statistically significant for MGW, Roll, and ProT (Mann−Whitney U test P values 0.0026, 2.5e-7, and 0.0246, respectively). The range of Gibbs free
energy differences ΔΔG (relative to the highest affinity site) is shown on the x axis.
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