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DNA binding specificities of transcription factors (TFs) are a key
component of gene regulatory processes. Underlying mechanisms
that explain the highly specific binding of TFs to their genomic
target sites are poorly understood. A better understanding of
TF−DNA binding requires the ability to quantitatively model TF
binding to accessible DNA as its basic step, before additional in
vivo components can be considered. Traditionally, these models
were built based on nucleotide sequence. Here, we integrated
3D DNA shape information derived with a high-throughput ap-
proach into the modeling of TF binding specificities. Using support
vector regression, we trained quantitative models of TF binding
specificity based on protein binding microarray (PBM) data for
68 mammalian TFs. The evaluation of our models included cross-
validation on specific PBM array designs, testing across different
PBM array designs, and using PBM-trained models to predict rela-
tive binding affinities derived from in vitro selection combined with
deep sequencing (SELEX-seq). Our results showed that shape-
augmented models compared favorably to sequence-based models.
Although both k-mer and DNA shape features can encode inter-
dependencies between nucleotide positions of the binding site,
using DNA shape features reduced the dimensionality of the fea-
ture space. In addition, analyzing the feature weights of DNA
shape-augmented models uncovered TF family-specific structural
readout mechanisms that were not revealed by the DNA sequence.
As such, this work combines knowledge from structural biology
and genomics, and suggests a new path toward understanding
TF binding and genome function.

protein−DNA recognition | statistical machine learning |
support vector regression | protein binding microarray | DNA structure

The mechanisms by which transcription factors (TFs) bind to
their genomic target sites and regulate gene expression are

still not well understood (1, 2). In particular, it is still unknown
why a given TF binds only to a subset of putative binding sites
in the genome and how these targets are selected. Studies have
identified multiple factors that play roles in achieving the DNA
binding specificity of TFs in vivo, including cofactors, coopera-
tivity, and chromatin accessibility (3).
A fundamental first step toward understanding TF binding is

to describe the recognition of “naked” DNA by TFs in vitro. This
process involves readout of the nucleotide sequence (4, 5) and three-
dimensional (3D) DNA structure (6–8). Although DNA structural
features have been discussed qualitatively as determinants of TF
binding (9–11), quantitative models describing the impact of DNA
shape on the strength of TF binding have received less attention.
Experimental high-throughput (HT) assays, such as protein-

binding microarrays (PBMs) (12), measure the in vitro binding
preferences of TFs to tens of thousands of different nucleotide
sequences. Sequence-based modeling of in vitro TF binding spe-
cificities using HT data has been a topic of broad interest (13–16).
Several methods for PBM data analysis have been developed.
Recently, the performances of 26 sequence-based methods for

predicting DNA binding specificity were assessed, based on PBM
data for 66 mouse TFs (17) generated by the fifth dialogue for
reverse engineering assessments and methods (DREAM5).
DNA sequence preferences are generally represented as po-

sition weight matrices (PWMs) (4) or position-specific affinity
matrices (18). The original concept of the PWM assumed that
a position within a binding site contributes to binding affinity
independent of other positions (19). This concept has recently
been expanded to include dinucleotide features that encode
dependencies between adjacent nucleotide positions (e.g., ref.
20). Trinucleotides (21, 22) and higher-order k-mer features (23,
24), defined as all possible sequences of length k, have also been
included in models of DNA sequence specificity. However,
model complexity can increase dramatically when such k-mer
features are used (21). Interdependencies between nucleotide
positions originate from physical interactions between base pairs,
which give rise to the 3D DNA structure. DNA-binding proteins,
in turn, recognize the resulting DNA structure (10). Thus, the
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large number of k-mer features necessary for encoding inter-
dependencies between nucleotide positions could potentially be
replaced by a smaller number of structural features.
Recently, we developed technology enabling augmentation of

the nucleotide sequence with 3D DNA shape features predicted
using a pentamer-based model built from all-atom Monte Carlo
simulations of DNA structures (25). Four distinct shape features—
Minor Groove Width (MGW), Propeller Twist (ProT), Roll,
and Helix Twist (HelT)—had been shown to be important for
protein−DNA recognition in specific cases (22, 26–28). How-
ever, to date, a systematic and comprehensive survey of the value
of shape-based models of DNA recognition has been lacking.
Here, we used HT protein−DNA binding data for 68 mamma-

lian TFs from different structural classes to develop and evaluate
DNA-binding specificity models based on different combinations
of sequence- and shape-based features, including mononucleotide
(1-mer), dinucleotide (2-mer), and trinucleotide (3-mer) identity,
as well as the DNA shape features of MGW, ProT, Roll, and HelT.
We used support vector regression (SVR) (29) with linear kernel to
train regression models for mapping DNA sequences to mea-
surements of binding affinity. Then, we evaluated these models
using four different approaches.
First, we used 10-fold cross-validation on a diverse set of uni-

versal PBM (uPBM) data for 65 mouse TFs (17) and genomic
context PBM (gcPBM) data for three human basic helix–loop–helix
(bHLH) TFs. Second, in a manner similar to ref. 17, we trained our
models using PBM data from one uPBM array design and tested
the models using data from a different uPBM array design (see
SI Methods for details). Third, we tested the ability of our PBM-
derived models to predict data generated using a different exper-
imental platform that provides quantitative measurements of TF−
DNA binding affinity. In particular, for one of the TFs in our study
(the human TF Max), we generated independent in vitro data
using systematic evolution of ligands by exponential enrichment
combined with massively parallel sequencing (SELEX-seq) (30).
We then used our PBM-derived binding specificity models to
predict the relative binding affinities measured by SELEX-seq.
Finally, using feature weights for the best-performing models, we
identified structural mechanisms that are used on a TF family-
specific basis for achieving DNA binding specificity.

Results and Discussion
DNA Shape-Augmented Models Outperform Sequence-Based Models.
TF binding sites were described in our quantitative specificity
models based on feature vectors containing the distinct set of fea-
tures of a specific model at each nucleotide position. Fig. 1A shows
a shape-augmented model that combines 1-mer sequence features
with the four DNA shape features, MGW, ProT, Roll, and HelT.
Features of the k-mers and of DNA shape are substantially different
in nature. Specifically, the k-mer features are binary categorical
attributes that characterize hydrogen bonds and other direct con-
tacts between the protein and the base pairs in the major groove (6).
In contrast, the DNA shape features are continuous attributes that
reflect properties of the DNA structure and capture interactions in
the minor groove (10). Given these differences, these two feature
types may potentially describe different mechanisms by which a TF
achieves its DNA binding specificity.
When tested on the uPBM data from the DREAM5 dataset

(17), our shape-augmented (1mer+shape) model outperformed
the sequence-only (1mer or PWM) model on 56 of the 65 TFs that
were tested (Fig. 1B). The only exceptions to this finding were TFs
with low-quality data (R2 < 0.25) and, to a lesser extent, three zinc
finger TFs. To include high-quality TF datasets, we generated
gcPBM data for the human bHLH TFs Mad1 (also known as
Mxd1), Max, and c-Myc (Fig. S1), based on a previously described
experimental protocol (21, 22). For these gcPBM data, we ob-
served even larger improvements in R2 when DNA shape features
were incorporated into the binding specificity models (Fig. 1B).

We observed a similar improvement when we used SELEX-seq
data that we generated for the human TF Max.
Considering the uPBM, gcPBM, and SELEX-seq data to-

gether, we found that the 1mer+shape model led to consistent
improvements for all homeodomain and bHLH TFs (Fig. 1B).
This observation is in accordance with our previous finding that
DNA shape readout plays an important role for these TF fam-
ilies (22, 30, 31). The results also indicate that predictions of
binding specificities for other TF families (e.g., bZIP and Fork-
head TFs) can benefit from adding DNA shape information to
the models. The results indicate that only a subset of zinc finger
proteins recognize DNA shape, which is likely due to their
modular DNA binding with one finger contacting three base
pairs (bp) in a largely independent manner from the binding of
adjacent fingers (6). However, because the DREAM5 data were
of lower quality (in terms of R2) for some members of these
families, conclusions on readout mechanisms used by these TF
families will require additional data from HT binding assays.
The 1mer+shape model implemented in this study used addi-

tional second-order shape features to account for dependencies
between structural features at adjacent nucleotide positions, such

Fig. 1. Design of the sequence+shape feature vector, and TF family-specific
performance comparison of binding specificity predictions. (A) The feature
vector used in the 1mer+shape model combined binary features for the
sequence (1-mers) with continuous values for the DNA shape features
(MGW, ProT, Roll, and HelT). In addition, second-order shape features were
also used throughout this study (see SI Methods for details). (B) Performance
comparison for different TF families tested in this study. DNA shape con-
tributed to the DNA binding specificities of all homeodomain and bHLH TFs
in the uPBM, gcPBM, and SELEX-seq datasets, consistent with previous work
on these TF families (9, 22, 30, 31, 34).
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as the formation of A-tracts, defined as stretches of at least four As
and Ts without TpA bp steps (10), where MGW narrowing is more
pronounced due to several adjacent A/T bp (6). These second-
order shape features were the product terms for the same DNA
shape feature category at two adjacent nucleotide positions (MGW
and ProT) or base pair step positions (Roll and HelT). The com-
bined use of the second-order DNA shape features with first-order
shape features and 1-mer features improved the prediction accu-
racy compared with the 1mer+first order shape model (Fig. S2A).

Models Using 2-mers and 3-mers Contain Implicit DNA Shape
Information. We also tested dinucleotide- and trinucleotide-based
models using 1-mer, 2-mer, and 3-mer features as predictors. When
tested on the DREAM5 uPBM data, the performances of the
1mer+2mer and 1mer+2mer+3mer models were, on average, very
close to the performance of the 1mer+shape model (Fig. 2 A and
B). This observation was not surprising because 2-mers and 3-mers
partially capture the effect of the DNA shape variation on binding.
Specifically, 2-mers describe stacking interactions between ad-
jacent bp, and 3-mers represent short structural elements, such
as A-tracts, which form distinct structures (10). Furthermore, for
certain TFs, models that used DNA shape features alone, with-
out any explicit information about base identity, were more ac-
curate than models based on sequence alone (Fig. 2C).
The DNA shape features used in our study were generated

based on pentamer query tables derived from thousands of all-
atom Monte Carlo simulations, and they were validated with X-ray
and NMR structures (25). To rule out the possibility that the use of
pentamer-based independent features in itself could explain the
enhanced performance of our shape-based models, we indepen-
dently randomized the association between pentamer identities
and values for each of the four shape features, which intentionally
breaks the relationships between pentamers. The R2 values ob-
tained with the randomized shape tables were significantly lower
compared with those for our DNA shape predictions (Fig. 2D),

demonstrating that the predictive power of DNA shape was not
simply due to the inclusion of pentamer-based features.
In the aforementioned analyses of 65 mouse TFs using uPBM

data from the DREAM5 study (17), we used 10-fold cross-vali-
dation to evaluate model performance, based on a single uPBM
dataset for each TF. In an alternative approach, we evaluated
our DNA shape-augmented models by training the models on
uPBM data from one array design and using them to predict
binding data obtained from a different array design, similar to
the procedure used by ref. 17. The results of the cross-array
testing were fully consistent with the results of the 10-fold cross-
validation tests (Fig. S2 B−E).

DNA Shape-Augmented Models Can Accurately Predict TF Binding
Data Across Experimental Platforms. To ensure that our re-
gression models of TF binding specificity are capturing real
signals and not experimental biases intrinsic to the PBM tech-
nology, we performed a cross-platform analysis. Specifically, we
trained our models on gcPBM data and tested them on quanti-
tative SELEX-seq data generated for the human TF Max (see
Methods and SI Methods). Briefly, the Max SELEX-seq experi-
ment was carried out as described previously (30), with two
rounds of selection, and the data were used to compute relative
binding affinities for 12-mer DNA sequences. Next, sequence- and
shape-based regression models trained on our Max gcPBM data
were used to predict the binding levels of Max to DNA targets
identified by SELEX-seq (Fig. 3A). Given that the two experi-
mental platforms (gcPBM and SELEX-seq) provided different
measurements for TF binding (i.e., binding intensity and relative
binding affinity, respectively), we used Spearman’s rank correla-
tion coefficients to assess the accuracy of our predictions. When
tested on SELEX-seq data, the 1mer+shape model outperformed
all of the sequence-based models, including the 1mer+2mer+3mer
model (Fig. 3 B−D and Fig. S3 A−C). The improvement is
modest, but nonetheless statistically significant (Fig. 3B).

Replacing k-mer with DNA Shape Features Reduces the Dimensionality of
the Feature Space. The assessment of different models required not
only a comparison of prediction accuracy but also of model com-
plexity, which relates to the required size of the training data and
the computational cost (Fig. 4A). Compared with the sequence-
based 1mer+2mer and 1mer+2mer+3mer models, the 1mer+shape
model contained fewer features, which translated into fewer model
parameters. For each nucleotide position, 4 features were in-
troduced to encode 1-mer identity, 16 features to encode 2-mer
identity, 64 features to encode 3-mer identity, and 8 features to
encode DNA shape. Therefore, the 1mer+shape, 1mer+2mer, and
1mer+2mer+3mer models used a total of 12, 20, and 84 features,
respectively, per nucleotide position (Fig. 4A). The finite sequence
length required a slight end-effect adjustment of these numbers of
features per nucleotide position.
To assess how models of different complexity performed on

smaller datasets, we used the gcPBM data that we generated for
the human bHLH TFs to assemble datasets of decreasing sample
size. As expected, the performance of all models decreased with
decreasing sample size (Fig. 4B and Fig. S4). This decreasing
trend was consistently more pronounced for sequence-based
models (1mer+2mer and 1mer+2mer+3mer) than for shape-
based models (1mer+shape and shape-only). This finding sug-
gests that shape features more efficiently captured the binding
specificities of the studied TFs than k-mer features.
Analysis of the gcPBM data for human bHLH TFs demon-

strated that the 1mer+shape model was superior to the 1mer+2mer
and 1mer+2mer+3mer models (Fig. 4B and Fig. S4). This dif-
ference was much more pronounced for the higher-quality
gcPBM than for the lower-quality uPBM data (Fig. 2 A and B),
likely because the gcPBM data contained less positional bias and
provided information on the genomic flanking regions (22).

Fig. 2. Performance of various models on uPBM data for 65 mouse TFs.
(A and B) Using R2 as a measure for prediction accuracy, the performance of
the shape-augmented model (1mer+shape) was compared with the perform-
ances of sequence-based (A) 1mer+2mer and (B) 1mer+2mer+3mer models.
(C) Performance comparison of the shape-only model to the sequence-only
(1mer) model. (D) Performance comparison of the shape-only model to
a model augmented by randomized shape features.
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The positive impact of a smaller number of features on the
model prediction accuracy for small sample sizes was also
demonstrated by using sequence models augmented with only
one category of DNA shape features, instead of all four. The
inclusion of only one DNA shape feature further reduced the
number of features (Fig. 5A). When tested on gcPBM data for
Max with smaller sample sizes (10 randomly generated samples
for each size), the prediction accuracies of the 1mer+Roll and
1mer+ProT models dropped at a slower rate compared with the
1mer+shape and 1mer+2mer+3mer models, which required many
more features (Fig. 5B).

DNA Shape-Augmented Models Reveal TF Family-Specific Readout
Mechanisms. We trained regression models using mononucleotide
identities (i.e., 1-mer features) and individual DNA shape features
(i.e., MGW, ProT, Roll, or HelT), to determine which shape

features are most important for predicting the binding prefer-
ences of TFs from different structural families. For the bHLH
TF Max, data for models using sequence and a single DNA
shape category suggested that Roll and ProT were the dominant
structural determinants of the DNA binding specificity. MGW
and HelT were of lesser importance for the DNA readout of this
specific TF (Fig. 5B). The inclusion of 1-mer features ensured
that the nucleotide identities necessary for base readout did not
indirectly influence the impact of the DNA shape features.
Analysis of the feature weights for 1mer+first order shape

models indicated that our approach has the potential to reveal
readout mechanisms on a TF family-specific basis. Second-order
shape features were not included in the models, to simplify the
interpretation of the shape feature weights. Feature weights for
Roll in the 1mer+first order shape model varied between large
positive and large negative weights within the core enhancer box

Fig. 3. Performance of binding specificity models across experimental platforms. (A) Flowchart illustrating that Max−DNA binding specificity models were
trained on natural logarithms of fluorescence binding intensities measured by a gcPBM experiment and used to predict the binding level of DNA targets
derived from a SELEX-seq experiment for the same TF. (B) Performance of various models for cross-platform predictions based on Spearman’s rank correlation
coefficients between observed SELEX-seq relative binding affinities and predicted gcPBM signal intensities. The P values indicate that the improvement in
prediction accuracy using the 1mer+shape model is significant compared with the sequence-based models. (C and D) Scatter plots of predicted versus ob-
served binding site ranks, showing the performance of the (C) 1mer and (D) 1mer+shape models trained on gcPBM data and tested on SELEX-seq data. Here,
higher ranks represent higher-affinity binding sites.

Fig. 4. Comparison of various models using gcPBM
data for human Max TF. (A) The number of required
features (per nucleotide position) was correlated
with the average running time for the training and
testing of different models for Max−DNA binding,
based on gcPBM data. (B) Performances of the se-
quence- and shape-based models for Max−DNA
binding as the sample size was decreased.
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(E-box) binding site (Fig. 5C). These feature weights accurately
reflected the pattern between large positive and large negative
Roll angles observed in a cocrystal structure of the Max−Max/
DNA complex (32). The DNA target of this ternary complex
contained the CACGTG E-box, which is the highest-affinity core
present in the gcPBM dataset (Fig. 5D). These observations in-
dicate that despite the presence of multiple E-box cores, there
exists a specific Roll pattern that is preferred by the Max
homodimer. Moreover, the findings show that a degeneracy of
DNA sequence and shape, similar to the degeneracy of protein
sequence and structure (33), constitutes an important charac-
teristic of TF binding sites (31).
Among the remaining DNA shape features, compared with

the weights for MGW and HelT, the weights for ProT derived
from the same Max 1mer+first order shape model agreed better
with the cocrystal-derived structural parameters (Fig. S5). This
observation was consistent with the prediction accuracies of the
different models of Max binding specificity (Fig. 5B). We also
analyzed the feature weights for MGW derived from uPBM data
for homeodomain TFs. We found that the 1mer+first order
shape model accurately reflected the known MGW preferences
of homeodomain TFs (Fig. S5D). The negative feature weights in
the second half of the TAAT core-binding site indicated a pref-
erence for a narrow MGW in this region, which is consistent with
previous X-ray (9), SELEX-seq (30), and uPBM (34) data.
Our analysis across diverse TF families shows that a limited set

of local DNA shape features improves binding specificity pre-
dictions. This approach introduces a coarse representation of the
double helix. Although the conformation, flexibility, and ener-
getics of DNA are properties that are known to affect tran-
scription factor binding (35), our simplified models use DNA
shape features that have been reported to be important for
protein−DNA binding (3) and that are available on a genome-
wide basis (36). Unlike atomistic modeling of protein−DNA
binding, which is a fine-grained description necessary for explicit
energy calculations (37), our coarse representation encodes the
energy landscape of protein−DNA binding implicitly. For ex-
ample, large positive Roll values of TpA bp steps encode weak
stacking interactions and thus high conformational flexibility (6).

Negative ProT values in A-tracts encode the possibility of
interbase-pair hydrogen bonds in the major groove resulting in
rigid elements (6). In our previous work on the DNA binding of
the Escherichia coli Fis protein, we found that DNA shape fea-
tures used in our models were predictive of binding affinities, as
the MGW is indicative of how much the DNA needs to be bent
in order for the binding to occur (25, 38). Here, we further
demonstrate this point by showing that for the human bHLH
Max TF DNA shape profiles of high-affinity binding sites based
on mechanically induced trapping of molecular interactions
(MITOMI) binding assays (39) substantially differ from shape
profiles of low-affinity, nonspecific DNA binding sites (Fig. S6).

Conclusion
Quantitative Models Combining DNA Sequence and Shape Contribute
to the Understanding of TF−DNA Binding. In this study, we have
shown that statistical machine learning models of TF−DNA
binding specificity consistently benefit from augmenting sequence-
based models with features encoding interactions between nu-
cleotide positions across a diverse panel of TFs. The improve-
ment in model performance can be achieved either with k-mer or
with DNA shape features. Although adding any interaction term
(i.e., 2-mer, 3-mer, or shape features) improved the modeling of
DNA binding specificities, more-efficient models were obtained
by using DNA shape, which represents interactions with a smaller
number of features.
DNA shape integrates the complex interdependencies be-

tween multiple positions of a binding site. This integration is
achieved implicitly, without any explicit knowledge of individual
interdependencies. In this way, the incorporation of DNA shape
reduces the number of required parameters while providing
a compelling mechanistic explanation for why dinucleotides and
trinucleotides can increase the accuracy of motif descriptions.
Despite the lower accuracy for some of the DREAM5 data, our
results show that quantitative models derived from SVR analyses
using HT sequence data can reveal specific mechanisms of
protein−DNA recognition on a TF family basis and can con-
tribute to the understanding of TF binding to the genome.
Compared to sequence-based methods, the combination of

Fig. 5. Insights into TF-specific readout mechanisms
derived from shape-augmented binding specificity
models. (A) Number of features per nucleotide posi-
tion introduced in different models. Models that in-
cluded only one shape feature further reduced the
total number of features compared with the 1mer+
2mer+3mer and 1mer+shape models. (B) The single-
shape-feature models 1mer+ProT and 1mer+Roll
performed better than the 1mer+shape and 1mer+
2mer+3mer models on smaller datasets. (C) Feature
weights for Roll (heat map) derived from the 1mer+
first order shape model using SVR accurately reflec-
ted the Roll characteristics (plot) observed in the
cocrystal structure of the ternary Max homodimer/
DNA complex [Protein Data Bank identifier (PDB ID)
1HLO] (32). (D) The CACGTG E-box in the cocrystal
structure was the highest-affinity core among the
nine observed E-box cores. Although other cores
were present in the gcPBM data for Max, the SVR
feature weights correctly reflected the Roll features
of the CACGTG core observed in the cocrystal struc-
ture (32).
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DNA sequence and shape provides a fundamentally different
approach for understanding TF binding specificities, which can
be broadly applied to TFs from different structural classes.

Methods
Encoding of DNA Sequence or k-mer Features. For each nucleotide position in a
given DNA sequence of length L, the k-mer feature at that position was encoded
as a binary vector of length 4k , where a value of 1 represents the occurrence of
a particular k-mer starting at that position. The k-mer features for a given DNA
sequence of length L were encoded by concatenating the k-mer feature vectors
at each nucleotide position, resulting in a binary vector of length 4kðL− k+ 1Þ.
See SI Methods for the resulting 1-mer, 2-mer, and 3-mer feature vectors.

Encoding of DNA Shape Features. For a given DNA sequence of length L, four
DNA shape features were predicted by an HT method trained on Monte Carlo
simulations of 2,121 different DNA fragments of 12–27 bp in length (25). These
structural features included two nucleotide parameters (MGW and ProT) and
two bp step parameters (Roll and HelT). The total length of the final DNA
shape feature vector was ð8L−32Þ, due to the use of four first-order and four
second-order shape features, and the unavailability of values at two positions
at each end (31). See SI Methods for the resulting shape feature vectors and the
source code used to compute DNA sequence features and shape features for
putative TF binding sites. The generated feature vectors can be used directly
to train and test SVR models with the publicly available library of support
vector machines (LIBSVM) toolkit (40).

Performance Evaluation of Sequence- and Shape-Based Models. After pre-
processing and feature encoding, PBM data for each TF were transformed
into a matrix. The first column of this matrix contained the natural logarithm
of the fluorescence signal intensities of the PBM probes, and the remaining
columns contained the encoded features. For each DNA shape characteristic,
first- and second-order DNA shape features were normalized to values be-
tween 0 and 1. The e-SVR algorithm (41) with linear kernel, implemented in

the LIBSVM toolkit (40), was used to train regression models for predicting
the natural logarithm of the PBM signal intensities (response variable) based
on the encoded features (see SI Methods for details).

To obtain unbiased performance estimates of the regression models on
each dataset, a nested 10-fold cross-validation procedure was implemented.
First, each dataset was randomly partitioned into 10 equally sized subsets.
Each subset was used for testing while the other nine subsets were used for
training. Thus, our models were always tested on data not included in the
training process. For each TF dataset, the squared Pearson correlation co-
efficient R2 between the predicted and observed values of the response
variables for all DNA sequences in that dataset was reported.

PBM and SELEX-seq Binding Assays. The gcPBM experiments for the human
TF dimers Mad1 (Mxd1)−Max, Max−Max, and c-Myc−Max (Mad, Max, and
Myc, respectively) were performed essentially as described previously (21). The
gcPBM data were preprocessed to filter out sequences containing more than
one putative TF binding site (see SI Methods). After the filtering step, 6,927
probes for Mad, 8,569 probes for Max, and 7,535 probes for Myc were
obtained. See also SI Methods for a description of the preprocessing of the
uPBM data for the 66mouse TFs (17), which resulted in 65 analyzable datasets.

A SELEX-seq experiment for the human TF dimer Max−Max was carried
out as described previously (30). After two rounds of SELEX, the relative
affinities of all 12-mers were calculated, and the data were preprocessed
similarly to the uPBM data (see SI Methods).
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