Supplementary Figures

Supplementary Figure 1. Specificity of ChEC-seq

(a) Agarose gel analysis of genomic DNA from TF-MNase and free MNase strains 0, 2.5, 5, 10, and 20 m after calcium addition. (b) Agarose gel analysis of genomic DNA from Reb1-MNase and free MNase strains 10, 20, 30, 40, 50, and 60 s after calcium addition. Also shown are boxplots of total ChEC-seq cleavages at peaks previously determined by various ChIP methods and an equal number of random sites for (c) Abf1, (d) Rap1, and (e) Reb1.

Supplementary Figure 2. Fast and slow ChEC-seq sites

Tracks of ChEC-seq signal at a fast and slow site for (a) Abf1, (b) Rap1, and (c) Reb1.

Supplementary Figure 3. ChEC-seq peaks are highly reproducible

Pairwise correlations of 30 s ChEC-seq replicate signal at (a) Abf1, (b) Rap1, and (c) Reb1 peaks. (d) Pairwise correlation of 2.5 m ChEC-seq replicate signal. (e) Pairwise correlations of 2.5 m Abf1 ChEC-seq replicate signal with 2.5 m Abf1 short linker ChEC-seq signal. The sum of cleavages in a 50 bp window around each peak midpoint was taken to be that peak's occupancy. The Spearman's rank correlation coefficient ρ for each pairwise comparison is reported.

Supplementary Figure 4

Supplementary Figure 4. ChEC-seq peaks show poor correlation with free MNase signal

Pairwise correlations of 30 s ChEC-seq and free MNase signal at (**a**) Abf1, (**b**) Rap1, and (**c**) Reb1 peaks. The sum of cleavages in a 50 bp window around each peak midpoint was taken to be that peak's occupancy. The Spearman's rank correlation coefficient ρ for each pairwise comparison is reported.

Supplementary Figure 5. Overlap of ChEC-seq peaks with ChIP peaks

(a) Venn diagrams of overlap between high- and low-scoring Abf1 ChEC-seq sites with Abf1 X-ChIP-chip and ORGANIC peaks. (b) Venn diagrams of overlap between high- and low-scoring Rap1 ChEC-seq sites with Rap1 X-ChIP-chip and ChIP-exo peaks. (c) Venn diagrams of overlap between high- and low-scoring Reb1 ChEC-seq sites with Reb1 ORGANIC and ChIP-exo peaks.

Supplementary Figure 6. High-scoring and low-scoring Abf1 sites display similar shape profiles. Heatmaps of DNA shape features minor groove width (MGW), Roll, propeller twist (ProT), and helix twist (HeIT) around high- and low-scoring Abf1 sites ranked ascending by motif match *p*-values.

Supplementary Figure 7. High-scoring and low-scoring Rap1 sites display similar shape profiles. Heat maps of DNA shape features minor groove width (MGW), Roll, propeller twist (ProT), and helix twist (HeIT) around high- and low-scoring Rap1 sites ranked ascending by motif match *p*-values.

Supplementary Figure 8. High-scoring and low-scoring Reb1 sites display similar shape profiles. Heat maps of DNA shape features minor groove width (MGW), Roll, propeller twist (ProT), and helix twist (HeIT) around high- and low-scoring Reb1 sites ranked ascending by motif match *p*-values.

Supplementary Figure 9. Classification of high-scoring and low-scoring motif sites using DNA sequence or shape. Models based on L2-regularized multiple linear regression (MLR) encoding either sequence (blue) or shape (red) were used to distinguish sequences containing high-scoring and low-scoring motifs (top row) for Abf1 (left), Rap1 (center), and Reb1 (right). The lower AUROC values for the shape-based classification indicate the higher similarity of high-scoring and low-scoring sites in terms of DNA shape compared to sequence. This difference between sequence- and shape-based models cannot be observed when the MLR classification is applied to sequences containing high-scoring motifs and random sequences (bottom row).

Supplementary Tables

Plasmid	Description	Source
pFA6a-3HA-KanMX6	C-terminal 3xHA-tagging vector (F2/R1 compatible), kanMX6	Addgene
pFA6a-3HA-HIS3MX6	C-terminal 3xHA-tagging vector (F2/R1 compatible), HIS3MX6	Addgene
pFA6a-3HA-TRP1	C-terminal 3xHA-tagging vector (F2/R1 compatible), TRP1	Addgene
pFA6a-kanMX6	Deletion vector (F2/R1 compatible), kanMX6	Sue Biggins
pGZ108	C-terminal 3xFLAG-MNase-tagging vector (F2/R1 compatible), kanMX6	This study
pGZ109	C-terminal 3xFLAG-MNase-tagging vector (F2/R1 compatible), HIS3MX6	This study
pGZ110	C-terminal 3xFLAG-MNase-tagging vector (F2/R1 compatible), TRP1	This study
pGZ136	3xFLAG-MNase-SV40 NLS under the control of the <i>REB1</i> promoter in pRS406	This study
pGZ172	MNase-3FLAG-REB1 under the control of the <i>REB1</i> promoter in pRS413	This study
pGZ173	C-terminal short linker-MNase-tagging vector (F2/R1 compatible), kanMX6	This study
pRS406	Integrating vector, URA3	Toshio Tsukiyama
pRS413	Shuttle vector, HIS3	Toshio Tsukiyama

Supplementary Table 1. Plasmids used in this study

Strain	Genotype	Source
GZY85	MATa ade2-1 can1-100 his3-11, 15 leu2-3, 112 trp1-1 ura3-1	This study
	RAD5+ REB1-3FLAG-MNase-kanMX6	
GZY98	MATa ade2-1 can1-100 his3-11, 15 leu2-3, 112 trp1-1 ura3-1	This study
	RAD5+ ura3::P _{REB1} -3FLAG-MNase-URA3	
GZY99	MATa ade2-1 can1-100 his3-11, 15 leu2-3, 112 trp1-1 ura3-1	This study
	RAD5+ ABF1-3FLAG-MNase-kanMX6	
GZY100	MATa ade2-1 can1-100 his3-11, 15 leu2-3, 112 trp1-1 ura3-1	This study
	RAD5+ RAP1-3FLAG-MNase-kanMX6	
GZY112	MATa ade2-1 can1-100 his3-11, 15 leu2-3, 112 trp1-1 ura3-1	This study
	RAD5+ ABF1-SL-MNase-kanMX6	
GZY113	MATa ade2-1 can1-100 his3-11, 15 leu2-3, 112 trp1-1 ura3-1	This study
	RAD5+ RAP1-SL-MNase-kanMX6	
GZY114	MATa ade2-1 can1-100 his3-11, 15 leu2-3, 112 trp1-1 ura3-1	This study
	RAD5+ REB1-SL-MNase-kanMX6	
GZY115	MATa ade2-1 can1-100 his3-11, 15 leu2-3, 112 trp1-1 ura3-1	This study
	RAD5+ reb1∆::kanMX6 pGZ172 (P _{REB1} -MNase-3FLAG-REB1	
	HIS3 CEN ARS)	
SKY1	MATa ade2-1 can1-100 his3-11, 15 leu2-3, 112 trp1-1 ura3-1	Kasinathan et al.1
	RAD5+ ABF1-3FLAG-kanMX4	

Supplementary Table 2. Yeast strains used in this study All strains were constructed in the W1588-4C background, which is isogenic to W303-1A except that a weak *rad5* mutation is repaired².

Supplementary References

- 1. Kasinathan, S., Orsi, G.A., Zentner, G.E., Ahmad, K. & Henikoff, S. High-resolution mapping of transcription factor binding sites on native chromatin. *Nat Meth* **11**, 203-209 (2014).
- 2. Zhao, X., Muller, E.G.D. & Rothstein, R. A Suppressor of Two Essential Checkpoint Genes Identifies a Novel Protein that Negatively Affects dNTP Pools. *Mol Cell* **2**, 329-340 (1998).