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SUMMARY

Protein-DNA binding is mediated by the recognition
of the chemical signatures of the DNA bases and
the 3D shape of the DNA molecule. Because DNA
shape is a consequence of sequence, it is difficult
to dissociate these modes of recognition. Here, we
tease them apart in the context of Hox-DNA binding
by mutating residues that, in a co-crystal structure,
only recognize DNA shape. Complexes made with
these mutants lose the preference to bind se-
quences with specific DNA shape features. Intro-
ducing shape-recognizing residues from one Hox
protein to another swapped binding specificities
in vitro and gene regulation in vivo. Statistical ma-
chine learning revealed that the accuracy of binding
specificity predictions improves by adding shape
features to a model that only depends on sequence,
and feature selection identified shape features
important for recognition. Thus, shape readout is a
direct and independent component of binding site
selection by Hox proteins.

INTRODUCTION

Precise control of gene expression relies on the ability of tran-

scription factors to recognize specific DNA binding sites. Two

distinct modes of protein-DNA recognition have been described:

base readout, the formation of hydrogen bonds or hydrophobic

contacts with functional groups of the DNA bases, primarily in

the major groove (Seeman et al., 1976), and shape readout,

the recognition of the 3D structure of the DNA double helix

(Rohs et al., 2009a). The importance of shape readout has

been inferred from crystal structures of protein-DNA complexes

(Joshi et al., 2007; Kitayner et al., 2010; Meijsing et al., 2009;

Rohs et al., 2009b) and from structural features of DNAs selected

by DNA-binding proteins in high-throughput binding assays

(Dror et al., 2014; Gordân et al., 2013; Lazarovici et al., 2013;

Slattery et al., 2011; Yang et al., 2014). However, as DNA shape

is a function of the nucleotide sequence, it is difficult to tease

apart whether a DNA binding protein favors a particular binding

site because it recognizes its nucleotide sequence or, alterna-

tively, structural features of the DNA molecule. Thus, whether

DNA shape is a direct determinant of protein-DNA recognition

remains an open question. In addition to being a potentially

important mode of DNA recognition, if DNA binding proteins

directly use shape readout then incorporating DNA structural in-

formation should significantly improve models for predicting

DNA binding specificity, which remains challenging with existing

methods (Slattery et al., 2014; Weirauch et al., 2013).

We previously described a role for DNA shape in the recogni-

tion of specific binding sites by the Hox family of transcription

factors, which in vertebrates and Drosophila specify the unique

characteristics of embryonic segments along the anterior-poste-

rior axis (Joshi et al., 2007; Mann et al., 2009; Slattery et al.,

2011). Using in vitro selection combined with deep sequencing

(SELEX-seq), which examines millions of sequences in an unbi-

ased manner, we found that while Hox proteins bind highly

similar sequences as monomers, heterodimerization with the

cofactor Extradenticle (Exd) uncovers latent DNA binding spec-

ificities (Slattery et al., 2011). High-throughput DNA shape pre-

dictions (Zhou et al., 2013) for sequences selected by each

Exd-Hox complex (containing the motif NGAYNNAY) revealed

that anterior and posterior Hox proteins prefer sequences with

distinct minor groove (MG) topographies. Whereas all Exd-Hox

complexes preferred sequences with a narrow MG near the AY

of the Exd half-site (NGAY), only anterior Hox proteins (Lab,

Pb, Dfd, and Scr) selected for sequences containing an addi-

tional minimum in MG width at the AY of the Hox half-site

(NNAY) (Figures 1A and S1) (Slattery et al., 2011). However,

this study, as well as analyses of other protein-DNA complexes

(Gordân et al., 2013; Yang et al., 2014), did not rule out the
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Figure 1. Scr’s Narrow-MG Recognizing Residues Are Required for Binding Specificity

(A) Two views of the Exd-Scr heterodimer bound to the Scr-specific target fkh250 (Protein Data Bank [PDB] ID 2R5Z) (Joshi et al., 2007).

(B) Plot of MG width derived from the Exd-Scr co-crystal structure showing that Arg5 (red) inserts into the MG width minimum at the Exd half-site (NGAY) while

Arg3 and His-12 (blue) insert into the MG width minimum at the Hox half-site (NNAY).

(C) Amino acid sequences of Scr variants. Numbering is relative to the first residue in the homeodomain. Only sequences from the Exd-interaction motif YPWM

through the homeodomain N-terminal arm are shown. The rest of the protein is wild-type in all cases. Red highlights mutated residues.

(D) 12-mer relative affinities of binding sites selected by each Scr variant in complex with Exd are color-coded according to the tenmost frequently observed Exd-

Hox binding sites.

(legend continued on next page)
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possibility that these shape preferences were merely a second-

ary consequence of base readout preferences.

A key prediction of the shape-recognition model is that if the

residues that recognize a distinct structural feature of the DNA,

for example a local minimum in MG width, are mutated then

the transcription factor should no longer prefer to bind DNA se-

quences containing that feature. Alternatively, if the structural

feature weremerely a byproduct of the DNA sequences selected

by a base readout mechanism in the major groove, the binding

sites preferred by the mutant factor would still contain that

feature. Here, we tested this prediction using the anterior Hox

protein Scr, which binds DNA with Exd to regulate Scr-specific

target genes during Drosophila embryogenesis (Ryoo and

Mann, 1999). In a co-crystal structure of the Exd-Scr hetero-

dimer bound to an Scr-specific target site, fkh250 (AGATTAAT),

both shape readout and base readout mechanisms were evident

(Joshi et al., 2007). In agreement with the SELEX-seq data, the

fkh250 binding site contained two MG width minima, one recog-

nized by Scr residues His-12 and Arg3, and the second recog-

nized by Scr residue Arg5 (Figures 1A and 1B) (Joshi et al.,

2007). As these residues did not form hydrogen bonds with ba-

ses, the implication is that they use shape readout, and not

base readout, as their sole mode of DNA recognition.

To test if Hox proteins directly use shape readout, we charac-

terized the properties of mutant proteins that, based on the Exd-

Scr co-crystal structures, are predicted to either lose or gain the

ability to read specific MG topographies. When MG-inserting

residues of Scr were mutated to alanines, thus impairing its abil-

ity to use shape readout, the mutant proteins no longer preferred

sequences containing these MG width minima. Conversely,

when MG recognizing residues from Scr were transferred to a

Hox protein that normally does not select for this structural

feature, the proteins selected binding sites with two MG minima

in vitro and gained the ability to activate an Scr-specific target

gene in vivo. Finally, we show that taking DNA shape features

into consideration significantly improved the ability to predict

Exd-Hox binding site specificities compared to models that

only depend on DNA sequence. Together, these findings

demonstrate that transcription factors directly use shape

readout for protein-DNA recognition, and in silico prediction of

DNA binding specificities will benefit by taking DNA structural

features into consideration.

RESULTS

Mutants that Interfere with Scr’s Ability to Read MG
Shape
In an initial set of experiments to tease apart the contributions

of shape readout from base readout, we mutated Scr residues

His-12, Arg3, and Arg5, which, in a co-crystal structure, only

use shape readout as their mode of recognition (Joshi et al.,

2007) (Figures 1A and 1B). We generated a series of mutant pro-

teins that change these residues to alanines and, consequently,

impair Scr’s ability to recognize local MG topographies. We

mutated either Arg3 alone (ScrArg3A), His-12 alone (ScrHis-12A),

both His-12 and Arg3 (ScrHis-12A, Arg3A), or Arg5 alone (ScrArg5A)

and tested the effect of these mutations in complex with Exd on

Scr’s DNA binding site preferences using SELEX-seq (Figure 1C).

Because the binding site for Exd-Hox complexes is 12 base

pairs (Slattery et al., 2011), we generated 12-mer relative affin-

ities for each Scr mutant in complex with Exd using small mod-

ifications of our previously described procedure (see Experi-

mental Procedures) (Riley et al., 2014; Slattery et al., 2011),

and compared them to the affinities generated by wild-type

(WT) Exd-Scr heterodimers. We color-coded the 12-mers based

on their core 8-mer (Figure 1D) (Slattery et al., 2011). Compared

to Scr WT, all three mutants showed an increased relative pref-

erence for the green (TGATTGAT), yellow (TGATGGAT), and pur-

ple (TGATCGAT) motifs, and a decrease in the preference for the

blue (TGATTAAT) motif (Figures 1D and 1E). Because the blue

motif includes the Scr-specific fkh250 binding site, we directly

compared the blue and red (Exd-Hox consensus) motifs by

plotting the relative affinities of 12-mer pairs that only differed

at the single position that distinguished them from being blue

or red (e.g., nnTGATTAATnn with nnTGATTTATnn). Whereas

ScrWT showed a preference for blue compared to red motifs

over the entire range of affinities, this preference was weakened

for ScrArg3A and abolished for ScrHis-12A, Arg3A (Figure 1F).

Although the above results show that Arg3 and His-12 are

required for Scr’s binding site preferences, they do not address

if this is due to their preference for a specificMGshape. To deter-

mine if His-12, Arg3, and Arg5 directly enable the selection of se-

quences with narrow MGs, we computed the average MG width

profile for thousands of 16-mer sequences that were preferen-

tially bound by each Scr variant in our SELEX-seq experiments.

We employed DNAshape, a high-throughput method for the

prediction of the structural features of DNA sequences based

on the average conformations of pentamers derived from all-

atom Monte Carlo simulations (Zhou et al., 2013). Sequences

selected by ScrHis-12A, Arg3A had an average MG width at A9

and Y10 that was significantly wider compared to those selected

by ScrWT, without affecting the selection of the MG width mini-

mum at A5Y6 (Figures 2, S2, and S3) (p < 23 10�16; Mann-Whit-

ney U test). Sequences selected by the single mutant ScrArg3A,

but not ScrHis-12A, had an intermediate width at A9Y10, suggest-

ing that His-12 and Arg3 synergistically contribute to MG

recognition at the Hox half-site (Figures 2 and S3). Conversely,

compared to ScrWT, ScrArg5A selected sequences with a wider

(E) Comparative specificity plots comparing the relative binding affinities of 12-mers selected by Exd-ScrWT (y axis) with each Exd-Scr variant (x axis). Each point

represents a unique 12-mer that is color-coded according to the core 8-mer it contains. Gray points represent 12-mers that do not contain any of the ten most

common cores. The black line indicates y = x.

(F) Plots comparing the relative affinities of sequences containing a bluemotif (TGATTAAT) (y axis) versus a redmotif (TGATTTAT) (x axis) for Exd-ScrWT and Exd-

Scr variants. Each point represents the relative affinities of a pair of 12-mers that are identical except for the position that makes it either a blue (nnTGATTAATnn)

or a red (nnTGATTTATnn) motif. The black line indicates y = x, and the red line is a linear regression trend line. The slope of the trend line and coefficient of

determination R2 of the data are indicated.

See also Figures S1, S2, and S3.
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MG specifically in the Exd half-site (A5Y6), but these sequences

retained the minimum at A9Y10 (Figures 2 and S3). These results

provide strong support for the idea that Arg5 directly selects se-

quences with a MGminimum at A5Y6, while Arg3/His-12 directly

select sequences with a MG width minimum at A9Y10. Selection

of these MG width minima occurs independently, even though

they are only separated by two base pairs.

Despite its importance in selecting Scr-specific features ofMG

topography, Arg3 is present in many Hox homeodomains, in-

cluding Antennapedia (Antp), that do not select a MG minimum

at A9Y10 (Figures 3A and S1) (Slattery et al., 2011). This observa-

tion prompted the question of why Arg3 in Antp and other poste-

rior Hox proteins does not select for a narrowMGat this position.

We speculated that the amino acids flanking Arg3 might play a

role in binding site selection by correctly positioning this MG-in-

serting side chain. Indeed, although both Scr and Antp have Arg3

and Arg5, these residues are part of an N-terminal armmotif that

differs between these two Hox proteins (R3Q4R5T6 in Scr and

R3G4R5Q6 in Antp) (Figure 3A). To test whether residues flanking

these arginines play a role in Scr binding specificity we charac-

terized an additional mutant, ScrHis-12AGQ (Figures 1C–1F). In

ScrHis-12AGQ, His-12 is mutated to alanine and the fourth and

sixth positions in the Scr homeodomain are changed to that of

Antp (Gln4 to Gly4 and Thr6 to Gln6) to mimic Antp’s R3G4R5Q6

motif. Strikingly, this mutant failed to select sequences with

a minimum at the Hox half site (A9Y10) (Figure 2). An addi-

tional mutant, ScrLinkGQ, that, in addition to having Antp’s

R3G4R5Q6 motif, has Antp’s linker (residues in between

the YPWM Exd interaction motif and the homeodomain, Fig-

ure S2A) in place of Scr’s linker, showed very similar behavior

to ScrHis-12AGQ (Figures 2 and S2). Together, these data suggest

that additional residues within and adjacent to the N-terminal

arm, which do not make direct contact with the DNA (minor or

major groove), play an important role in selecting Hox-specific

MG topographies, likely by positioning the MG inserting side

chains of Arg3, Arg5, and His-12.

Mutants that Transfer Scr’s Ability to Read MG Shape
to Antp
The above experiments demonstrate that MG-inserting side

chains in Scr are necessary for Scr’s ability to select sequences

with localMGwidthminima. To test whetherMG recognizing res-

 29364

 197562

 14833

 29135

 93380

 114164

 165253

 33092AntpWT

ScrWT

1 2 3
T

4
G

5
A

6
Y

7
N

8
N

9
A

10
Y

11 12

Position

4.0

4.5

5.0

5.5

6.0
MGW [Å]

#reads

ScrLinkGQ
ScrHis−12AGQ

ScrArg5A

ScrHis-12A, Arg3A

ScrHis−12A

ScrArg3A

Figure 2. Loss of MG Width Preferences in

the Absence of MG-Recognizing Residues

Heat map of the average MG width at each posi-

tion of 16-mers selected by each Exd-Hox heter-

odimer. Dark green represents narrow MG regions

whereas white represents wider MG regions. The

number of sequences analyzed for each complex

is shown on the right. Black lines demarcate where

Arg5 inserts into the MG (A5Y6) and, for ScrWT,

where Arg3 and His-12 insert into the MG (A9Y10).

idues are sufficient to confer Scr’s binding

preferences to a different Hox protein, we

introduced these residues into Antp,

which normally prefers sequences with

wider MG regions at A9Y10 (Figure 2). We created a series of

Antp mutants that contained various combinations of Scr-spe-

cific amino acids in two regions, the linker and the N-terminal

armmotif R3Q4R5T6 (Figure 3A). Remarkably, the 12-mer relative

affinity profiles of these Antpmutants (in complexwith Exd) grad-

ually converged toward that of ScrWT upon the introduction of

residues used for MG width recognition (Figures 3B–3D). All of

the residues tested—Gln4, Thr6, His-12, and the linker—contrib-

uted to the convergence of Antp’s binding specificity toward that

of Scr, with the most Scr-like mutant, AntpLinkQT, being nearly

indistinguishable from ScrWT (Figures 3B and 3C). A direct com-

parison of the relative affinity for the red motif versus the Scr-

preferred blue motif also revealed a gradual shift in preference

toward the bluemotif (Figure 3D). Thus, Scr-specific amino acids

from its linker and N-terminal arm are sufficient to confer Scr’s

binding specificity on another Hox protein.

To determine if these Antpmutants also share Scr’s MG shape

preferences, we used DNAshape to predict theMGwidths of 16-

mers selected by these proteins. In general, the average MG

width at A9Y10 of the sequences selected by the Antp mutant se-

ries became narrower, toward that of Scr, upon the introduction

of Scr-specific residues (Figure 4A), where, with the exception of

AntpHQ, each successive mutant selected sequences with a

statistically significant narrowing of the average MG at these po-

sitions (Figure S4A). On average, the differences in MGwidths at

these positions were larger for high-affinity sequences than for

low-affinity sequences (Figure S4B). Taken together, these re-

sults suggest that Scr residues Gln4, Thr6, His-12, and linker

all contribute to the recognition of DNA shape. Moreover, these

residues are sufficient to confer the shape preferences of Scr

when inserted into another Hox protein.

As an alternative way to analyze these data, we compared the

binding specificities of each Antp variant geometrically by calcu-

lating the Euclidean distances between the MG width profiles of

sequences selected by each variant with the average MG width

of those selected by Exd-AntpWT and Exd-ScrWT, respectively.

The resulting density plots showed two occupancy peaks, one

representing sequences that are more similar to those selected

by AntpWT, and a second representing sequences that are

more similar to those selected by ScrWT (Figure 4B). With the

exception of AntpHQ, each successive Antp variant showed a

gradual shift toward the ScrWT peak, with AntpLinkQT showing

310 Cell 161, 307–318, April 9, 2015 ª2015 Elsevier Inc.



a nearly complete shift. Thus, key Scr-specific residues in the

linker andN-terminal armwere sufficient to convert Antp’s shape

preferences to those of Scr.

Antp Variants that Mimic Scr’s DNA Shape Preferences
Activate an Scr-Specific Target In Vivo
The above results demonstrate that shape readout, mediated

by a limited number of Hox residues, is an essential component

of DNA recognition by Exd-Hox heterodimers in vitro. But how

relevant is this readout mechanism in vivo? To answer this

question we examined the ability of these Antp variants to acti-

vate fkh250-lacZ, an Scr-specific reporter gene that contains a

binding site (AGATTAAT) with two MG width minima (Joshi

et al., 2007). In otherwise wild-type embryos, fkh250-lacZ

expression was limited to Scr-expressing cells in parasegment

2 (PS2) (Ryoo and Mann, 1999) (Figure 5A). Ectopic expression

of ScrWT using the prd-Gal4 driver activated fkh250-lacZ in

segments outside PS2 (Figure 5B), and His-12 and Arg3 of

Scr are required for this activation (Joshi et al., 2007). In contrast

to Scr, ectopic expression of AntpWT did not activate fkh250-

lacZ (Figure 5C). However, ectopic expression of AntpHQT

resulted in modest fkh250-lacZ activation (Figure 5D), while

ectopic expression of AntpLinkQT, the Antp mutant whose

binding specificity most closely resembled Scr in vitro (Figures

3 and 4), resulted in strong activation of fkh250-lacZ (Figure 5E).

Thus, Antp mutants that prefer to bind sequences with two MG

width minima in vitro, the normal topography of an Scr-specific

binding site, also have the ability to activate an Scr-specific

target gene in vivo.

DNA Shape Features Improve Accuracy of Binding
Specificity Predictions
If shape readout is a direct and independent determinant of Hox-

DNA binding specificity, we speculated that shape features of

the target DNA could be used to improve quantitative predictions

of relative binding affinities. To test this notion, we trained an L2-

regularized multiple linear regression (MLR) model (Yang et al.,

2014) for each of the mutants and WT Hox proteins. We used

10-fold cross validation in order to train and determine the accu-

racy of a given model, quantified as the coefficient of determina-

tion R2. These MLR-derived R2s are robust as they are highly

correlatedwithR2s derived using an alternativemachine learning

approach, support vector regression (ε-SVR) with a linear kernel

(Figure S5; see Experimental Procedures for details) (Gordân

et al., 2013; Zhou et al., 2015).

Using MLR, addition of MG width to a model based only on

nucleotide sequence resulted in a modest improvement in R2

of on average 12% (Figures 6A and S6A). Like MG width, adding

three other shape features one at a time, Roll, propeller twist

(ProT), and helix twist (HelT), also led to a modest improvement

in accuracy (Figure S6A). Inclusion of all four DNA shape features

in combination further increased prediction accuracy (Figures 6B

and S6A). The improvement in binding affinity prediction accu-

racy, on average 26% when incorporating all four shape fea-

tures, yielded the largest effect with high significance (p = 6 3

10�5; Mann-Whitney U test). The addition of any combination

of three shape features led to an intermediate increase in predic-

tion accuracy, in some cases similar to that after addition of all

four shape features (Figure S6A). These results suggest that all

four features contribute to Exd-Hox-DNA target selection in a

non-additive manner, consistent with the interdependency of

these features (Olson et al., 1998). Thus, including DNA shape

features in addition to MG width improves binding site predic-

tions over models based only on nucleotide sequence.

For comparison, we also assessed the benefit of adding

shape features for the prediction of Hox monomer specificities.

Interestingly, in this case the improvement inR2was, on average,

only 6.4%, suggesting a larger role for DNA shape in conferring

heterodimer specificity than monomer specificity (Figure S6B).

DNA Shape Contributes to Binding Specificities in a
Position-Specific Manner
Next, we hypothesized that if shape features contribute to an

improvement in binding specificity prediction, then it might be

possible to localize this effect within the binding site. We trained

models using the sequence of the entire binding site augmented

by all four shape features at individual positions one at a time, re-

sulting in a set of models that tested the contribution of shape at

each position of the binding site. We compared these models to

a sequence-only model and calculated aDR2. This analysis high-

lighted the importance of DNA shape for predicting Exd-Hox

binding specificities in the core, but not the flanks, of the binding

site (Figure 6C).

To analyze the role of DNA shape in a complementary manner,

we trained shape-onlymodels using the four shape features at all

nucleotide positions, leaving out this information one position at

a time, resulting in a set of models that assessed the relative

importance of DNA shape at each position of the binding site.

DR2s were calculated relative to a model that included the four

shape features at all positions. In this analysis, prediction accu-

racy was expected to decrease most when shape features were

removed from the model at positions that were important for

shape readout. Interestingly, we detected the greatest effect at

the A9 position of the Hox half-site, followed by slightly weaker

effects at the adjacent Y10 position and the G4 position of the

Exd half-site (Figure 6D). Eliminating shape features from the re-

maining positions had a smaller impact on the ability to predict

binding specificities.

Within each SELEX-seq data set, the sequences were most

variable at the N8 position, raising the possibility that the success

of these models might be driven in large part by this position. To

test this idea and better assess the role of DNA shape throughout

the binding site we trained additional models in which we

removed sequence information at the N8 position (‘‘sequence-

N8 model’’). Leaving out sequence information at the N8 position

did not significantly affect the accuracy of a sequence+shape

model, suggesting that sequence information at N8 is not essen-

tial for its performance (Figure S7A). WhenMGwidth information

was added to the sequence-N8model, the ability to predict bind-

ing specificities was greatly enhanced compared to the same

model without MG width information (Figures S7B and S7C).

These results argue that MGwidth information is more important

than sequence at positions with a degenerate sequence signal,

such as at N8, where direct readout is not playing a role. The

removal of the confounding sequence information at this position

uncovered MG width as an independent specificity determinant.
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Figure 3. Introducing Scr’s MG Width-Recognizing Residues into Antp Converts Its Binding Specificity to that of Scr

(A) Amino acid sequences (from the Exd interaction motif, YPWM, through the N-terminal arm of the homeodomain) of Antp variants. Green highlights residues

specific to AntpWT, and red highlights residues specific to ScrWT. Non-highlighted residues are common between the two Hox proteins. Numbering is relative to

the first residue of Scr’s homeodomain. The rest of the protein is wild-type in all cases.

(B) 12-mer relative affinities of binding sites selected by each Antp variant in complex with Exd are color-coded according to the ten most commonly observed

Exd-Hox motifs. AntpWT and ScrWT are included to show the progression of the binding preferences from AntpWT toward ScrWT.

(C) Comparative specificity plots of the relative affinity of sequences selected by Exd-ScrWT (y axis) and each Exd-Antp mutant (x axis). Each point represents a

unique 12-mer that is color-coded according to the core 8-mer it contains. Gray points represent 12-mers that do not contain any of the tenmost common cores.

The black line indicates y = x.

(legend continued on next page)
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When all four shape features were added to the sequence-N8

model at single positions one at a time the contribution of DNA

shape within the core motif was very apparent (Figure 7A), and

significantly stronger than when the starting model included

sequence information at the N8 position (compare with Fig-

ure 6C). If instead of all four DNA shape parameters only MG

width was added position by position to the sequence-N8model,

the average improvement in R2, while smaller, was most

apparent at or adjacent to Y6N7 and A9Y10 (Figure 7B). Thus,

although DNA shape is generally important within the entire

core of the binding site, the contribution of MGwidth is strongest

at the two AY regions, precisely where local minima in MG width

were observed in the Exd-Hox X-ray structures (Joshi et al.,

2007) and SELEX-seq data (Figures 2 and 4).

Taken together, quantitative predictions based on regression

models indicated that shape features become important where

sequence information is not well defined, more likely at positions

that are not involved in base readout. In these cases, shape

features contain more information than sequence alone, and

removing the signal from sequence enables the quantitative

modeling of the role of shape features on binding specificity.

DNA Shape Features Discriminate Anterior from
Posterior Hox Binding Specificities
To understand towhat extent shape features can help distinguish

Exd-ScrWT from Exd-AntpWT binding specificities, we assigned

avalueof +1 to the top50%of sequences selectedbyExd-ScrWT

and –1 to the top 50% of sequences selected by Exd-AntpWT

(D) Plots comparing the relative affinities of sequences containing a bluemotif (TGATTAAT) (y axis) versus a redmotif (TGATTTAT) (x axis) for ScrWT, AntpWT and

Antp variants. Each point represents the relative affinities of a pair of 12-mers that are identical except for the position that makes it either a blue (TGATTAAT) or a

red (TGATTTAT) motif. The black line indicates y = x, and the red line is a linear regression trend line. The slope of the trend line and coefficient of determinationR2

of the data are indicated.
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A Figure 4. Shape Readout Properties of Antp

Variants with Scr-Specific Residues

(A) Heat map of the average MG width at each

position of all statistically significant 16-mers

selected by each Exd-Hox complex. Dark green

represents narrow MG regions whereas white

represents wider MG regions. The number of se-

quences analyzed for each protein is shown on the

right. Black lines demarcate where Arg5 inserts

into the MG (A5Y6) and, for Scr, where Arg3 and

His-12 insert into the MG (A9Y10).

(B) Histogram representing the distribution of

MG width similarities for each of the sequences

selected by each Antp variant in comparison to

those selected by ScrWT and AntpWT. The y axis

represents the density of 16-mers at different

D(Euclidean distance) scores (x axis). Sequences

more similar to those selected by ScrWT receive a

negative score, and sequences more similar to

those selected byAntpWT receive a positive score.

See also Figure S4.

(see Experimental Procedures for details).

We then used sequence- and shape-

based models to evaluate the discrimina-

tive power of the selected features. Using L2-regularized MLR

and 10-fold cross validation, we calculated the area under the

receiver-operating characteristic curve (AUC) as a criterion for a

model todiscriminateScrWT-like fromAntpWT-likebinding spec-

ificities.We found thatMGwidth alone,without using sequenceor

additional shape features, discriminates between the binding

specificities of both Exd-Hox complexes with high accuracy (Fig-

ure S7D). Thus, MG width does not merely refine binding speci-

ficity but is a powerful descriptor on its own, at least for discrimi-

nating between these two Exd-Hox complexes. Classification

models using other shape parameters performed similarly well

(Figure S7D), indicating that a classification between two states

is less sensitive than quantitative prediction of binding strength

using regression models. Further, these results suggest that the

qualitative differences that are apparent in the MG width heat

maps (Figures2 and4A) reflect a quantitativedifference in anterior

and posterior Hox specificities.

Next, we asked which positions in the binding site had the

highest impact on this classification. To answer this question,

we calculated the Pearson correlation between the class la-

bels +1 and –1 for Exd-ScrWT and Exd-AntpWT, respectively,

and MG width at each position (see Experimental Procedures

for details). Several positions showed strong, either positive or

negative, correlations that enabled the classification into

ScrWT-like and AntpWT-like binding specificities (Figure 7C).

Two regions showing a negative Pearson correlation aligned

with the two MG width minima observed in the Exd-Scr co-crys-

tal structure, and a region of positive Pearson correlationmarked
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the region between theseminima. This observation confirms that

the core region is important for the differences in binding speci-

ficity between paralogous Hox factors. Interestingly, not only is

the AY region of the Hox half-site important, but the shape of

the entire core, presumably due to the influence of all core posi-

tions on the shape of this region.

Finally, we used classification models to predict whether the

DNA shape mutants defined in Figures 1, 3, and S2 tend to

show ScrWT-like or AntpWT-like binding specificities. Here, a

sequence was classified as ScrWT-like if the class label was pre-

dicted to be >0, and as AntpWT-like if the class label was pre-

dicted to be <0. This classification indicated a gradual change in

the fractionof sequences selectedbyanyof themutants assigned

as ScrWT- versus AntpWT-preferred sequences (Figure 7D).

These data quantitatively confirm the qualitative observations

shown above (Figures 2 and 4A) that MG width topography is an

important binding specificity signal for Hox proteins.

DISCUSSION

Despite significant effort in the field, it is still not possible to

accurately decipher the regulatory information that is encoded
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Figure 5. Scr’sMGWidth Readout Residues

Confer the Ability to Activate an Scr-

Specific Target In Vivo when Incorporated

into Antp

(A) In wild-type embryos fkh250-lacZ is activated

only in parasegment 2 (PS2), where endogenous

Scr is expressed (arrowhead). In this and all

panels, anterior is to the left.

(B) Ectopic expression of ScrWT using prd-Gal4

(visualizedwith red stripes of ectopic expression in

the panel on the right) activates fkh250-lacZ

anterior and posterior to PS2. Activation is stron-

gest anterior to PS2 (bracket) and immediately

posterior to PS2 (thick arrow), with weaker acti-

vation in abdominal segments (thin arrows).

(C) Ectopic expression of wild-type Antp does not

activate fkh250-lacZ.

(D) Ectopic expression of AntpHQT leads to weak

ectopic fkh250-lacZ expression anterior and pos-

terior to PS2 (thin arrows).

(E) Ectopic expression of AntpLinkQT leads to

activation both anterior and posterior to PS2.

Activation is strongest anterior to PS2 (bracket)

and immediately posterior to PS2 (thick arrow),

with weaker activation in abdominal segments

(thin arrows).

in the DNA sequences of eukaryotic ge-

nomes (Slattery et al., 2014). In the

work described here, we used a combi-

nation of in vitro, in vivo, and computa-

tional approaches to show that intrinsic

DNA structural characteristics—collec-

tively referred to as DNA shape—are be-

ing directly read by DNA binding proteins

when they recognize their binding sites.

Thus, analogous to mechanisms in which

DNAbase pairs are directly read by proteins via hydrogen bonds,

the recognition of DNA shape independently contributes to both

binding affinity and specificity. Using this information, we show

that including DNA shape features significantly enhances the

ability to predict DNA binding specificities and thus will greatly

improve models for accurately predicting transcription factor

binding in eukaryotic genomes.

Separable Contributions of DNA Shape and Sequence to
Protein-DNA Recognition
Although several previous reports suggested the importance of

DNA shape in protein-DNA recognition, all prior work was unable

to definitively discriminate between the roles of DNA shape and

sequence. Although DNA shape features, such as MG width,

were previously found to contribute to binding specificity (Dror

et al., 2014; Gordân et al., 2013; Lazarovici et al., 2013; Yang

et al., 2014), here the roles of DNA sequence and shape have

been separated and analyzed in an unbiasedmanner. To achieve

this, we mutated Scr amino acid side chains that do not make

direct base contacts in themajor groove, but instead either insert

into the MG (His-12, Arg3, Arg5) or indirectly influence these in-

teractions (Gln4, Thr6, linker). The combination of SELEX-seq
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with high-throughput DNA shape analysis allowed us to show the

effect of these mutations on the selection of DNA binding sites

with distinct shape characteristics. Further, not only were these

amino acid side chains necessary for conferring the DNA binding

preferences of these proteins, they were sufficient to confer this

specificity, both in vitro and in vivo, when grafted into a different

Hox protein, Antp. These experiments effectively tease apart the

contributions of shape readout from base readout. We speculate

that the readout of DNA shapemay be a general mechanism that

transcription factors use to recognize their binding sites. More-

over, for transcription factors that are members of large paralo-

gous families, such as the Hox proteins, DNA shape may be

essential for distinguishing between binding sites that are diffi-

cult to discriminate based on base readout alone.

Statistical Machine Learning Reveals DNA Structure-
Based Binding Specificity Signals
To complement and extend the in vitro and in vivo studies, we

used statistical machine learning, in this case multiple linear

regression (MLR), to computationally analyze the contributions

of DNA sequence and shape. Using this approach we were

able to (1) quantify the overall contribution of shape features to

binding specificity and (2) compute the relative contributions of

DNA shape and sequence at individual positions within the bind-

ing site. Extensive experimental work, involving structure deter-

mination and mutagenesis, represents the current standard

approach for uncovering DNA readout mechanisms of transcrip-

tion factors. The quantitative modeling introduced here suggests

an alternate route for deriving suchmechanistic information from

high-throughput sequencing data. These methods will therefore

likely be valuable when used to predict the DNA binding specific-

ities of other transcription factors and when analyzing their inter-

actions with genomes.

To identify positions in the binding site where shape features

contribute substantially to binding specificity, we used a form

of feature selection in which we compared models with different

feature sets by computing a DR2 relative to a reference

model. We found that the shape features in the core of the

Exd-Hox heterodimer binding site were important for paralogous

binding specificity. This observation is distinct from previous

observations for another family of transcription factors, basic he-

lix-loop-helix (bHLH) factors, where shape features in regions

flanking the core binding site play an important role in discrimi-

nating binding specificities of related family members in yeast

(Gordân et al., 2013) and human (Yang et al., 2014). Further,

our feature selection approach indicates that shape features at

the AY region of the Hox half-site were themost critical for deter-

mining binding specificity. This finding agrees with qualitative

A B

C D

Figure 6. DNA Shape Features Improve

Quantitative Predictions of DNA Binding

Specificities of Exd-Hox Heterodimers

(A) Scatter plot representing the coefficient of

determination R2 obtained using a sequence-only

model (x axis) compared to a model using

sequence and MG width (y axis). Each point rep-

resents a different Exd-Hox heterodimer and is

color-coded as indicated.

(B) Scatter plot representing the coefficient of

determination R2 obtained using a sequence-only

model (x axis) compared toamodel usingsequence

and four DNA shape features (MGwidth, Roll, ProT

and HelT) (y axis). Quantitative measures for the

improvement of the prediction accuracy of the

logarithm of relative binding affinities using shape-

augmented models are provided in Figure S6.

(C) Box plots illustrating the contribution from DNA

shape features to model accuracy when shape

features were added to a sequence model at each

position individually. The effect on the coefficient

of determination DR2 is shown for adding four

shape features (MG width, Roll, ProT and HelT)

position-by-position to the sequence model. The

centerline of the box plots represents the median,

the edge of the box the first and third quartile, and

the whiskers indicate minimum/maximum values

within 1.5 times the interquartile from the box.

(D) Box plots illustrating the contribution from DNA

shape features to model accuracy when sequence

features were removed. The effect on the coeffi-

cient of determination DR2 is shown for leaving out

four shape features (MG width, Roll, ProT, and

HelT) position-by-position from a shape-only

model that does not contain any sequence infor-

mation. The box plots are defined in (C).

See also Figures S5 and S6.
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observations in a previous study (Slattery et al., 2011) and in this

work (Figures 2 and 4) that shape selections varied most sub-

stantially at this position for both wild-type and mutant Hox pro-

teins. While this was previously a qualitative observation, the

current study shows the effect quantitatively. The machine

learning and feature selection methods reveal that this informa-

tion will likely provide a powerful approach when analyzing

data from high-throughput binding assays for other transcription

factors. In particular, it is noteworthy that we were able to

derive structural mechanisms used by Hox transcription factors

based only on sequence data alone, without solving a 3D

structure.

Broader Implications for Recognition of Genomic Target
Sites by Transcription Factors
Based on our findings, we propose that as more high-

throughput DNA binding data become available (Hume et al.,

2015; Jolma et al., 2013; Zhu et al., 2011), DNA shape param-

eters should be taken into consideration when analyzing and

subsequently scanning genomes for DNA binding site prefer-

ences. Further, although different families of transcription fac-

tors may use DNA shape in various ways, this information

may be used to inform binding site prediction algorithms. As

shown here quantitatively, Exd-Hox heterodimers use distinct

structural features in the DNA, such as local regions of narrow

MG, to achieve DNA binding specificity. Because MG width

minima are distinct structural motifs, we were able to separate

their contributions to DNA recognition both biochemically, by

mutating amino acids that recognize these motifs, and compu-

tationally, by training models that include or exclude specific

subsets of DNA features. For other protein families, the contri-

bution of DNA structure may not be as readily separable as it is

for Exd-Hox binding. For example, although previous work

demonstrated a role for DNA shape in conferring the binding

specificity of bHLH proteins, this effect was mediated by se-

quences flanking the core binding site (E-box), where no known

protein-DNA interactions (base or shape readout) occur (Gor-

dân et al., 2013). In this case, the role of DNA shape may be

biochemically inseparable from base readout because it is un-

likely that a distinct structural motif is formed by the flanking

sequences.

Our results have implications for the design of binding site

search and de-novo motif discovery methods, which currently

most typically rely only on DNA base features (Weirauch

et al., 2013). There are some examples where large sets of

overlapping DNA structural features, which are highly interde-

pendent from each other and inseparable from sequence,

have been integrated in motif search algorithms (Hooghe

A B

C D

Figure 7. Models that Deconvolve DNA

Sequence and Shape

(A) Removing sequence features at the N8 position

where sequence is least constrained across the

selected sequences from the sequence+shape

model furtheremphasizes thecontributionofadding

DNA shape to model accuracy. Whereas removing

sequence information at this position has essentially

no effect on model accuracy (Figure S7A), adding

MG width to the sequence-N8 model has a large

effect on prediction accuracy (Figure S7B). Based

on this finding, the effect on the coefficient of

determination DR2 is shown in box plots for adding

four shape features (MGwidth, Roll, ProT, andHelT)

position-by-position to thesequence-N8model.The

centerline of the box plots represents the median,

the edge of the box the first and third quartile, and

the whiskers indicate minimum/maximum values

within 1.5 times the interquartile from the box.

(B) Box plots illustrating the effect on the coefficient

of determination DR2 for adding MG width infor-

mation position-by-position to the sequence-N8

model emphasize the roleof theAYand immediately

adjacent positions. The box plots are defined in (A).

(C) Pearson correlations (red) between MG width

(MGW) and binding site labels (+1 for ScrWT-like

versus –1 for AntpWT-like) track with the MGW

pattern (blue) observed in the co-crystal structure

(Joshi et al., 2007), emphasizing the important role

of MGW in the core region of Exd-Hox binding site.

(D) A sequence+shape classification model cap-

tures the gradual change of binding specificities

introduced by mutations of the N-terminal arm

and linker sequences with some Exd-Hox mutant

heterodimer specificities classified asScr-like (red)

and others as Antp-like (blue).

See also Figure S7.

316 Cell 161, 307–318, April 9, 2015 ª2015 Elsevier Inc.



et al., 2012; Maienschein-Cline et al., 2012; Meysman et al.,

2011). The results described here, however, suggest that for

some transcription factor families, distinct structural motifs,

which can be defined independently from sequence, such as

MG topography, can be directly integrated in genome analysis

tools as quantifiable search parameters. The ability to indepen-

dently define and quantify the role of distinct structural motifs

will likely yield more powerful algorithms that may help identify

low affinity, high specificity Hox binding sites that are unrecog-

nizable with standard approaches (Crocker et al., 2015). Further,

machine learning approaches may also contribute to more ac-

curate models of cooperative transcription factor binding, for

example in the interferon-b enhanceosome (Chang et al.,

2013), or in vivo, where DNA shape has been identified as a pre-

dictive feature for transcription factor binding (Barozzi et al.,

2014). We further propose that the computational approaches

described here will also be valuable for deconvolving and

discovering the roles of DNA shape and sequence even for

transcription factors such as the bHLH factors where DNA

shape cannot be as readily separated biochemically from DNA

sequence. The ability to quantitatively assess the distinct roles

of DNA sequence and shape will therefore advance our ability

to identify bona fide genomic binding sites and the ability to

interpret eukaryotic genomes.

EXPERIMENTAL PROCEDURES

Oligonucleotides

All oligonucleotides used in this study are listed in Table S1.

Protein Purification

Scr and Antp mutants were cloned using the QuickChange Site-Directed

Mutagenesis Kit (Agilent) using his-tagged ScrWT (Joshi et al., 2007) and

his-tagged AntpWT (Jaffe et al., 1997; Noro et al., 2006) as templates.

His-tagged proteins were expressed in BL21 cells and purified using

Cobalt chromatography. For the SELEX-seq experiments, ‘‘Exd’’ refers

to Exd co-purified with the HM domain of Homothorax (Hth) (Noro

et al., 2006).

In Vivo Analysis

All transgenic UAS lines were generated using the f-C31 integration system

into the attP2 insertion site. UAS lines were crossed to flies containing

fkh250-lacZ on the second chromosome and prd-Gal4 on the third chromo-

some. Embryos were collected at 25�C and stained using rabbit anti-b-galac-

tosidase (Cappell) and either mouse anti-Scr (gift from D. Andrews) or mouse

anti-Antp (8C11; DSHB).

SELEX-Seq

All SELEX experiments were carried out as described (Riley et al., 2014;

Slattery et al., 2011). In total, five 16-mer libraries were used for multiplex-

ing (Table S1). Sequencing was performed by Illumina HiSeq 2000/2500.

The number of sequences analyzed for each protein is listed in Tables S2

and S3.

Inferring Relative Binding Affinities

Fifth order Markov models were constructed using Round 0 (R0) se-

quences to predict the number of 12-, 14-, and 16-mer sequences in

each initial library as described (Riley et al., 2014; Slattery et al., 2011).

R3 data were used for all Hox variants in order to optimize counts and mini-

mize sampling error. 12-, 14-, and 16-mer relative binding affinities were

generated by taking the cubic root of the enrichment ratio (counts in R3

divided by expected counts as predicted using Markov model derived

from R0 data).

High-Throughput DNA Shape Prediction

All sequences selected in R3 of SELEX with a count of at least 25 were aligned

based on the TGAYNNAY (Exd-Hox heterodimers) or TAAT (Hox monomers)

motifs. Four DNA structural features were derived for these sequences from

a high-throughput DNA shape predictionmethod (Zhou et al., 2013). Euclidean

distance was used to compare MG width profiles of sequences selected by

Hox mutants to the average MG width at all positions of sequences selected

by the Hox WTs. See Extended Experimental Procedures for details.

Regression Models for Predicting Binding Specificities

Quantitatively

To predict the relative binding affinity for sequences bound by the Hox mono-

mers and Exd-Hox heterodimers, we trained L2-regularized multiple linear

regression (MLR) models (Yang et al., 2014). A 10-fold cross-validation was

performed with an embedded 10-fold cross-validation on the training set to

determine the optimal l parameter. We trained models that (1) encoded the

nucleotide sequence of each of the bound sequences as binary features

(sequence models), (2) encoded different combinations of the DNA shape

features MG width, ProT, Roll, and HelT (shape models), and (3) combined

nucleotide sequence and DNA shape features at the corresponding position

(sequence+shape models). We calculated the coefficient of determination

R2 between the predicted and experimentally determined logarithm of relative

binding affinities using 10-fold cross validation. We used all 14-mer sequences

from R3 of the selection with a count of >50, aligned based on the TGAYNNAY

core motif for heterodimers, and the logarithm of the relative binding affinity as

response variable. DR2s were defined as described in the text. See Extended

Experimental Procedures for details and access to the source code for DNA

shape prediction and feature mapping.

Classification Models for Distinguishing Binding Specificities

To classify Hox binding specificities, we aligned 14-mers selected by Exd-

ScrWT (assigned the label +1) or Exd-AntpWT (assigned the label –1) accord-

ing to the presence of a single coremotif TGAYNNAY.We trained classification

models using L2-regularizedMLR and used the resultingmodels to classify the

top 50%aligned binding sites preferred by themutants. Themodels were eval-

uated based on this training data using L2-regularizedMLR and 10-fold cross-

validation, and area under the receiver-operating characteristic curve (AUC)

was used as performance measure. See Extended Experimental Procedures

for details.
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