SUPPLEMENTARY DATA

Covariation between homeodomain transcription factors and the shape of their DNA binding sites

Iris Dror^{1,2}, Tianyin Zhou¹, Yael Mandel-Gutfreund^{2,*}, and Remo Rohs^{1,*}

¹ Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA

² Department of Biology, Technion – Israel Institute of Technology, Technion City, Haifa 32000, Israel

*To whom correspondence should be addressed: Tel: +1 213 7400557, Fax: +1 213 8214257, Email: <u>rohs@usc.edu</u> (R.R.) Correspondence may also be addressed to: Tel: +972 4 8293958, Fax: +972 4 8225153, Email: <u>yaelmg@tx.technion.ac.il</u> (Y.M.G.)

SUPPLEMENTARY FIGURES

Supplementary Figure S1: (A) Binding site logo representing the DNA binding preference of all homeodomains in the mouse PBM data (14). **(B)** Binding site logo representing the DNA binding preference of all homeodomains in the *Drosophila* B1H data (16). **(C)** Flowchart for measuring the similarity between the nucleotide sequences of the homeodomain (HD)-DNA binding sites. For each HD we collected all preferred binding sequences (as explained in detail in Materials and Methods), and using these sequences, we calculated a position frequency matrix (PFM) representing the DNA binding preferences of each HD. Next, we compared pairs of PFMs using Pearson Correlation Coefficient (PCC) to derive the pair-wise DNA sequence similarity.

Supplementary Figure S2: Flowchart for measuring the similarity between the DNA shapes of the HD binding sites. For each HD we collected all preferred DNA binding sequences (see Materials and Methods for details), and using these sequences, we predicted the different shape parameters for each nucleotide position and calculated an average shape preference for each HD. Next, we compared pairs of average shape preferences using Euclidian distance to derive the pair-wise DNA shape similarity.

Supplementary Figure S3: (A) Plots representing the correlation between the pair-wise HD sequence similarity and DNA binding site similarities, based on five features (nucleotide sequence (PFM) and the four DNA shape parameters minor groove width (MGW), propeller twist (ProT), Roll, and Helix Twist (HeIT)), using B1H data (16). **(B)** Plots representing the correlation between the pairwise HD sequence similarity and DNA binding site sequences using position weight matrices (PWM) to describe nucleotide sequence.

Supplementary Figure S4: Dependencies between the amino sequences of HDs and the nucleotide sequence (PFM) and shape features (MGW, ProT, Roll, and HeIT) of their DNA binding sites derived from PBM (14) and B1H (16) data.

Supplementary Figure S5: Dependencies between the amino sequences of HDs and the nucleotide sequences (PFM) and shape features (MGW, ProT, Roll, and HeIT) of their DNA binding sites derived from PBM (14) and B1H (16) data. Assigning the DNA PFM scores to seven bins with an equal number of binding sites (see Materials and Methods for details), we calculated the PCC for the PBM (top panel) and B1H (bottom panel). The correlations indicate that our findings are equivalent to the analysis without using bins (see also Figure 2A; Supplementary Figures S3 and S4).

Supplementary Figure S6: Dependencies between the occurrence of positively charged amino acids in HDs and a narrow minor groove region in their DNA binding sites, based on PBM (14) and B1H (16) data. (A) Top: Sequence logo representing the alignment of all 168 HD sequences in mouse. The amino acids are numbered to correspond with the convention for Hoxa9 in mouse (32). Positively charged amino acids are colored in blue. Bottom: –log *p*-value of the hypergeometric score between positively charged amino acids and a narrow minor groove at each position of their preferred DNA binding sites. (B) Top: Sequence logo representing the alignment of all 83 HD sequences in *Drosophila*. The amino acids are numbered to correspond with the convention for Engrailed in *Drosophila* (29). Positively charged amino acids are colored in blue. Bottom: –log *p*-value of the hypergeometric score between positively charged amino acids are colored in blue. Bottom: –log *p*-value of the hypergeometric score between positively charged amino acids are colored in blue. Bottom: –log *p*-value of the hypergeometric score between positively charged amino acids are colored in blue. Bottom: –log *p*-value of the hypergeometric score between positively charged amino acids are colored in blue. Bottom: –log *p*-value of the hypergeometric score between positively charged amino acids are colored in blue. Bottom: –log *p*-value of the hypergeometric score between positively charged amino acids are colored in blue. Bottom: –log *p*-value of the hypergeometric score between positively charged amino acids are colored in blue. Bottom: –log *p*-value of the hypergeometric score between positively charged amino acids are colored in blue. Bottom: –log *p*-value of the hypergeometric score between positively charged amino acids and a narrow minor groove at each position of their preferred DNA binding sites.

Supplementary Figure S7: Mutual information (MI) scores between each amino acid position in the HDs and a narrow minor groove region at each nucleotide position of their preferred DNA binding sites are shown for the PBM (14) and B1H (16) data. (A) Top: Sequence logo representing the alignment of all 168 HD sequences in mouse. The amino acids are numbered to correspond with the convention for Hoxa9 in mouse (32). Bottom: MI score between amino acids and MGW at each position of their preferred DNA binding sites. (B) Top: Sequence logo representing the alignment of all 83 HD sequences in *Drosophila*. The amino acids are numbered to correspond with the convention for Engrailed in *Drosophila* (29). Bottom: MI score between amino acids and MGW at each position of their preferred DNA binding sites.

Supplementary Figure S8: DNA shape analysis of the PBM data for Hox proteins in mouse (14). Left: Average minor groove width in each position of the preferred DNA binding sites of anterior and posterior Hox proteins. Right: Variations in amino acids at the N-terminal tail, recognition helix (marked in black box), and other positions that were previously suggested to be important for HD-DNA recognition. The amino acids are colored according to the Clustal default color scheme. Note that the different DNA shape preferences of anterior and posterior Hox protein observed here for mouse have been previously discovered for *Drosophila* (20).

SUPPLEMENTARY TABLES

HD position

		1	2	3	4	5	6	7
	1	0.292945	0.04992	0	1.345023	0.945645	0.001709	0.123923
	2	4.018248	0.018882	0	8.475893	8.192503	0.017978	0.003874
	3	4.355083	0.227073	0	4.997744	6.434828	0.002812	0.026844
	4	0.009799	2.562664	0	2.14E-12	7.14E-10	0.226981	1.416225
	5	4.263259	0.04696	0	7.377116	7.288451	0.014188	4.74E-05
	6	5.47E-07	1.550741	0	6.33E-11	1.40E-09	1.725337	0.189629
	7	0.50042	0	0	0.220468	0.09276	0.755584	1.777074
	8	0	0	0	0	0	0	0
	9	0.001047	0.287374	0	0.001381	0.001022	0.076653	0.990819
	10	0.364762	1.283032	0	1.13E-06	4.82E-05	2.311224	0.752252
	11	0.002696	1.31483	0	0.000166	0.008443	0.037322	0.62321
	12	0	0	0	0	0	0	0
	13	0.002114	0.772654	0	0.0231	0.063888	0.136972	1.048374
	14	0.684135	1.98841	0	0.004405	0.010705	0.108294	0.326161
	15	0.406873	0	0	0.91817	0.614063	0	0
	16	0	0	0	0	0	0	0
	17	0.000119	0.043211	0	3.79E-08	2.46E-11	2.653262	3.937763
	18	2.081683	0.202525	0	4.106282	6.775098	0.000106	3.91E-06
	19	0.343165	0	0	4.44158	2.955953	0.900153	0.890647
	20	0	0	0	0	0	0	0
	21	0.024489	0.090719	0	0.117699	0.099601	0.777717	0.030829
	22	6.24E-05	0	0	1.053427	0.255646	1.748101	0.111807
	23	0.788398	0	0	0.04773	0.00825	0.03272	0.961821
	24	1.339748	0.174711	0	4.967307	4.046083	0.018823	0.000779
	25	0.091048	0	0	1.671752	1.116955	0	0.02432
	26	0	0	0	0	0	0	0
	27	0	0	0	0	0	0	0
	28	0.413973	1.586783	0	0.006715	0.058483	0.292311	0.000624
	29	1.186053	0.149478	0	1.34859	1.372217	0.322081	0.336292
	30	1.496648	4.904932	0	0.001124	0.087793	0.048015	0.299756
	31	0.686776	0.684491	0	0	0	0.003767	0.00284
	32	0.057358	2.794307	0	5.81E-12	2.66E-12	0.096124	3.628445
	33	0.234559	0.853344	0	0.194348	0.11758	0.057072	0.032315
	34	0	0	0	0	0	0	0
ſ	35	0	0	0	0	0	0	0

Supplementary Table S1: Hypergeometric test scores for the PBM dataset (14).

BS position

1	1	1		1	1	1	1
36	0.163298	0.158863	0	0.220455	2.955953	0.005996	0.002133
37	1.561751	0.241874	0	1.19614	1.477872	0.345505	0.034178
38	0	0	0	0	0	0	0
39	0.000935	0	0	0.009773	0.002773	1.693236	0.038163
40	0	0	0	0	0	0	0
41	0.314497	0	0	0.7094	0.474565	0.612503	0.510752
42	0.019041	0	0	2.348082	1.567406	1.251854	1.4251
43	2.801963	2.05099	0	0.123191	1.138948	0.013897	0.004195
44	1.726653	0	0	2.025447	1.077089	1.145551	0.799238
45	0	0	0	0	0	0	0
46	0.773543	0.182844	0	3.733836	7.076812	0.005116	0.012859
47	0	0	0	0	0	0	0
48	0.044116	0	0	0.099385	0.066536	0.865301	0.798355
49	0	0	0	0	0	0	0
50	0.027326	0.108653	0	0.09166	0.045108	10.74025	10.61409
51	0	0	0	0	0	0	0
52	0.856346	0.835363	0	2.839861	4.953009	2.49E-07	3.37E-06
53	0	0.025405	0	0	0	0	0
54	0.000636	0	0	8.17E-10	1.10E-12	2.731675	2.287804
55	0.980147	0.154706	0	0	0	0.387994	0.458672
56	0.406873	1.072702	0	0.137257	0.203551	0	0
57	0	0.342453	0	2.234064	3.304592	0.036994	3.83E-06
58	2.208479	0.277556	0	3.417947	4.657535	0.001515	5.34E-08

Supplementary Table S2: Hypergeometric test scores for the B1H dataset (16).

	1	2	3	4	5	6
1	0.201363	0.06936	0.062255	0.227434	0.276018	0.169757
2	0.076128	0.013744	0.0803	0.301678	0.210324	0.032724
3	0.045843	0.028535	0.0803	0.295216	0.226871	0.030147
4	0.24368	0.06936	0.049261	2.25E-01	2.41E-01	0.154102
5	0.012281	0.000936	0.109286	0.097194	0.110724	7.91E-03
6	8.67E-02	0.109286	0.0803	4.49E-01	4.26E-01	0.086957
7	0.130805	0.0803	0.0803	0.278362	0.26686	0.114818
8	0.030932	0.041315	0.006374	0.049437	0.04934	0.026716
9	0.107354	0.028535	0.062255	0.231639	0.287507	0.057272
10	0.213416	0.056972	0.056972	2.96E-01	3.04E-01	0.146179
11	0.243111	0.056972	0.052762	0.202011	0.181016	0.102667
12	0.056549	0.001917	0.062255	0.265404	0.31886	0.016223
13	0.040888	0.046264	0.043643	0.214399	0.152637	0.016614
14	0.258535	0.032468	0.109286	0.225799	0.197379	0.175828
15	0.08614	0.016243	0.062255	0.225118	0.226131	0.112173
16	0.012281	0.000936	0.000936	0.007914	0.00584	0.007914
17	0.100655	0.005562	0.06936	1.09E-01	1.55E-01	0.09723
18	0.143508	0.023279	0.0803	0.180384	0.1451	1.11E-01
19	0.122976	0.026272	0.062255	0.312731	0.303289	0.208575
20	0.038815	0.002945	0.052762	0.247285	0.240036	0.024966
21	0.169402	0.046264	0.052762	0.221464	0.21912	0.10374
22	2.55E-01	0.052762	0.0803	0.218841	0.190509	0.11061
23	0.132606	0.02237	0.02237	0.127701	0.169434	0.106513
24	0.164102	0.062255	0.046264	0.176922	0.209814	0.083185
25	0.016599	0.002945	0.002945	0.024966	0.018406	0.036682
26	0.040743	0.062255	0.017615	0.117575	0.09658	0.017292
27	0.059217	0.023279	0.023279	0.10435	0.096225	0.023877
28	0.086826	0.062255	0.056972	0.289302	0.268913	0.132451
29	0.144141	0.06936	0.046264	0.210998	0.218654	0.138483
30	0.1501	0.062255	0.027373	0.127862	0.174745	0.101993
31	0.08651	0.0044	0.049261	0.277153	0.23378	0.078971
32	0.129124	0.109286	0.06936	3.00E-01	2.48E-01	0.12646
33	0.212537	0.016243	0.062255	0.152096	0.171155	0.092523
34	0.017183	0.009494	0.009494	0.081384	0.059794	0.024126
35	0.009572	0.00366	0.00366	0.009618	0.017268	0.002979
36	0.166488	0.062255	0.062255	0.159757	0.141422	0.156156
37	0.154607	0.0803	0.049261	0.113695	0.144507	0.164476

BS position

HD position

38	0.146125	0.008554	0.035573	0.138871	0.178663	0.020985
39	0.207143	0.06936	0.026272	0.106101	0.100488	0.096019
40	0.008736	0.001258	0.001258	0.010638	0.007849	0.010638
41	0.104106	0.016918	0.016918	0.088344	0.107766	0.105364
42	0.160555	0.009494	0.0803	0.197261	0.22854	0.127039
43	0.079791	0.028535	0.031074	0.182042	0.219434	0.095734
44	0.04169	0.010478	0.010478	0.089994	0.06608	0.046784
45	0.013004	0.006793	0.006793	0.057938	0.042634	0.014701
46	0.061389	0.013163	0.0803	0.299885	0.330106	0.13191
47	0.060511	0.021499	0.052762	0.2223	0.281918	0.004569
48	0.004027	0.000307	0.000307	0.002597	0.001917	0.046264
49	0.00812	0.00062	0.00062	0.005234	0.003863	0.019567
50	0.052585	0.00366	0.052762	0.190873	0.240751	0.190873
51	0	0	0	0	0	0
52	0.053219	0.004027	0.004027	0.092989	0.110132	2.13E-02
53	0	0	0	0	0	0
54	0.069108	0.033963	0.06936	1.96E-01	2.41E-01	0.073362
55	0.038815	0.002945	0.043643	0.139271	0.190617	1.01E-02
56	0.118337	0.109286	0.056972	0.257677	0.308839	0.173313
57	0.016513	0.012598	0.019858	0.184083	0.180475	0.0533
58	0.074614	0.014341	0.109286	0.328309	0.302299	0.141612

Supplementary Table S3: Mutual information scores for the PBM dataset (14).

BS position

	1	2	3	4	5	6	7
1	0.094798	0.081373	0	0.237079	0.2082	0.257948	0.186747
2	0.146119	0.08228	0	0.278428	0.256386	0.099587	0.089062
3	0.169107	0.082349	0	0.223504	0.194932	0.061654	0.098035
4	0.074743	0.125748	0	3.53E-01	2.17E-01	0.26922	0.236924
5	0.099804	0.012717	0	0.141728	0.158962	7.51E-02	8.96E-02
6	1.24E-01	0.145494	0	5.79E-01	4.55E-01	0.123428	0.250919
7	0.171951	0.136851	0	0.378239	0.259009	0.190008	0.20654
8	0.129064	0.076084	0	0.142945	0.144532	0.104217	0.04834
9	0.0528	0.021674	0	0.170449	0.184164	0.040914	0.149877
10	0.120761	0.111179	0	2.73E-01	1.74E-01	0.104002	0.153556
11	0.094376	0.10573	0	0.212553	0.252122	0.143094	0.145597
12	0.139161	0.023524	0	0.231241	0.253425	0.047233	0.062205
13	0.063686	0.040581	0	0.14673	0.091636	0.094335	0.09359
14	0.127254	0.084786	0	0.241037	0.293128	0.157094	0.220367
15	0.106513	0.062327	0	0.12412	0.132414	0.138033	0.231319
16	0.011269	0.006483	0	0.018785	0.030043	0.003411	0.026247
17	0.074742	0.024395	0	1.69E-01	2.37E-01	0.091336	0.195679
18	0.090354	0.069414	0	0.152875	0.192684	1.16E-01	1.63E-01
19	0.177207	0.086638	0	0.39338	0.413623	0.302549	0.32149
20	0.056872	0.033511	0	0.277107	0.373347	0.056239	0.051989
21	0.138821	0.0774	0	0.304559	0.263156	0.181246	0.144045
22	9.85E-02	0.085183	0	0.111122	0.128268	0.172014	0.159729
23	0.077289	0.085631	0	0.236415	0.184471	0.110428	0.170551
24	0.09744	0.093434	0	0.247264	0.221795	0.077973	0.121719
25	0.05316	0.102361	0	0.103343	0.079615	0.042799	0.032972
26	0.031039	0.142306	0	0.151603	0.122594	0.115292	0.141936
27	0.056946	0.095133	0	0.13075	0.065144	0.085692	0.124197
28	0.125986	0.069476	0	0.256187	0.240377	0.202664	0.248864
29	0.159084	0.079057	0	0.295323	0.243316	0.202109	0.152744
30	0.111857	0.10258	0	0.162315	0.157647	0.1176	0.22601
31	0.102144	0.018489	0	0.313248	0.25687	0.085909	0.127579
32	0.142541	0.133907	0	3.23E-01	2.89E-01	0.096029	0.154785
33	0.129229	0.055182	0	0.102289	0.120625	0.083865	0.061125
34	0.017056	0.013697	0	0.01761	0.022566	0.017538	0.014431
35	0.02452	0.075549	0	0.06981	0.020708	0.015124	0.010272
36	0.180147	0.068223	0	0.2479	0.275945	0.259677	0.203744
37	0.178621	0.120676	0	0.23094	0.239813	0.232774	0.156269

38	0.042501	0.0126	0	0.119413	0.208781	0.174124	0.144872
39	0.079679	0.053268	0	0.108704	0.084834	0.088187	0.101889
40	0.125757	0.017582	0	0.026208	0.03665	0.098834	0.084169
41	0.050128	0.048161	0	0.085642	0.057492	0.068306	0.039538
42	0.195425	0.061075	0	0.30772	0.257441	0.18304	0.162056
43	0.152532	0.08059	0	0.187167	0.191834	0.099448	0.172982
44	0.048258	0.044824	0	0.169437	0.116412	0.171576	0.16394
45	0.022376	0.026355	0	0.027912	0.009141	0.005592	0.014837
46	0.18448	0.099897	0	0.441234	0.440735	0.103766	0.177235
47	0.124106	0.055107	0	0.240996	0.238123	0.03436	0.112228
48	0.000835	0.000481	0	0.001882	0.00126	0.016482	0.015193
49	0.018739	0.002433	0	0.009532	0.006378	0.02116	0.020757
50	0.121299	0.020986	0	0.213039	0.262806	0.379491	0.520845
51	0.001675	0.000965	0	0.003776	0.002527	0.017641	0.016571
52	0.051783	0.025696	0	0.172312	0.20955	1.53E-01	1.44E-01
53	0.000835	0.000481	0	0.001882	0.00126	0.016482	0.015193
54	0.212176	0.074962	0	3.19E-01	3.74E-01	0.181977	0.186228
55	0.104841	0.004926	0	0.166562	0.196252	3.37E-02	0.058791
56	0.150544	0.144287	0	0.330128	0.252681	0.118517	0.140134
57	0.012351	0.006968	0	0.105343	0.125935	0.075185	2.41E-01
58	0.104512	0.022007	0	0.175824	0.19423	0.072543	1.57E-01

Supplementary Table S4: Mutual information scores for the B1H dataset (16).

			в <u>э</u> р	Dosition		
	1	2	3	4	5	6
1	0.423016	0	0	0.335491	1.107145	0.013769
2	0	0.053519	0	3.606906	1.746909	0.453222
3	0	0.053519	0	1.352032	0.854491	0.453222
4	0.352139	0.838849	0	4.45E-04	5.46E-05	0.133832
5	0	0.019305	0	1.472783	1.734754	1.63E-01
6	8.30E-02	1.838849	0	0.00E+00	0.00E+00	0
7	0.253007	0	0	0.1631	0.120371	0.504332
8	0	0	0	0	0	0
9	0.340157	0	1.236789	0.001755	0.000641	0
10	0.362453	0.634729	0	5.96E-03	8.69E-04	0.222544
11	0.994962	0	0.797456	0.050105	0.02102	0.113082
12	0	0	0	0	0	0
13	0.293594	0	0.884607	0.000232	0.011398	0.158642
14	0.695087	0	0	0.027536	0.051506	0.057712
15	0.006408	0	0	0.393224	0.290042	0
16	0	0	0	0	0	0
17	1.198294	0	0.724906	1.42E-04	6.22E-06	0
18	0.032899	0.2156	0	0.4191	0.359603	6.86E-02
19	0.116214	0	0	0.576424	0.424971	0.485724
20	0	0	0	0	0	0
21	0.244917	0	0	0.210307	0.098605	0.149464
22	2.71E-04	0	0.51663	0.638176	0.395421	1.300119
23	0.099992	0	0	0.045357	0.025287	0
24	0.500435	0	0	1.209634	1.960701	0.692326

0

0

0

0

0.692721

0

0.039509

0.884607

0

0

0

0

0

0.393224

0

0

0.269014

0.096426

0.238702

0

2.32E-04

0.065401

0

0

0.183805

0.335491

0.290042

0

0

0.395421

0.188359

0.361721

0

8.36E-04

0.246577

0

0

0.085181

0.467076

0.225021

0

0

0.113538

0.068347

0.130418

0.007849

0

0

0

0

0.170946

0.605883

BS position

HD position

0.187978

0

0

0.327359

1.303029

0.284508

0.156587

0.293594

0.518972

0

0

1.744503

0.004639

0

0

0

0.51663

0

0.537819

0.039509

0

0

0

0

0.583577

0

25

26

27

28

29

30

31

32

33

34

35

36

37

38	0	0	0	0	0	0
39	0.148217	0	0	0.639706	0.471547	0
40	0	0	0	0	0	0
41	0.253007	0	0	0.1631	0.120371	0.504332
42	0.034329	0	0	0.1631	0.120371	0
43	1.025562	0.560095	0	0.210307	0.32941	0.028821
44	0.01553	0	0	1.045753	0.769991	0.513056
45	0	0	0	0	0	0
46	0.199169	0.236789	0	0.715311	1.360633	0.261387
47	0	0	0	0	0	0
48	0	0	0	0	0	0
49	0	0	0	0	0	0
50	0.141553	0	1.060698	0.007849	0.002995	2.959667
51	0	0	0	0	0	0
52	0	0.053519	0.053519	1.352032	1.746909	1.14E-01
53	0	0	0	0	0	0
54	0.428795	0	0	1.67E-04	3.68E-05	1.003619
55	0	0	0	0	0	0.00E+00
56	0.063951	0	0	0.219216	0.161763	0.40192
57	0	0.025936	0.025936	2.394438	2.831255	0.028401
58	0.075073	0.060698	0	3.272697	4.195417	0.003437

HD	Sequence	Sequence + shape	Sequence + shuffled shape
Alx3_3418.2	0.46	0.49	0.46
Alx4_1744.1	0.39	0.42	0.39
 Arx_1738.2	0.43	0.48	0.43
Bapx1_2343.1	0.29	0.35	0.29
Barhl1_2590.2	0.35	0.39	0.35
Barhl2_3868.1	0.38	0.42	0.38
Barx1_2877.1	0.3	0.36	0.3
Barx2_3447.2	0.35	0.41	0.34
Bsx_3483.2	0.34	0.4	0.34
Cart1_0997.1	0.43	0.47	0.43
Cart1_1275.1	0.33	0.36	0.32
Cdx1_2245.1	0.42	0.44	0.41
Cdx2_4272.1	0.42	0.45	0.42
Cphx_3484.1	0.23	0.26	0.23
Crx_3485.1	0.27	0.33	0.27
Cutl1_3494.1	0.33	0.35	0.33
Cutl1_3494.2	0.32	0.34	0.32
Dbx1_3486.1	0.42	0.45	0.41
Dbx2_3487.1	0.46	0.49	0.46
Dlx1_1741.2	0.45	0.49	0.45
Dlx2_2273.2	0.41	0.45	0.4
Dlx3_1030.1	0.42	0.45	0.42
Dlx4_3488.2	0.43	0.46	0.43
Dlx5_3419.2	0.42	0.46	0.42
Dmbx1_2277.1	0.28	0.33	0.28
Dobox4_3956.2	0.24	0.26	0.24
Dobox5_3493.1	0.28	0.32	0.28
Duxl_1286.2	0.34	0.39	0.34
Emx2_3420.1	0.38	0.42	0.38
En1_3123.2	0.44	0.46	0.43
En2_0952.1	0.44	0.47	0.44
Esx1_3124.2	0.48	0.52	0.48
Evx1_3952.2	0.37	0.42	0.37
Evx2_2645.3	0.37	0.42	0.36
Gbx1_2883.2	0.41	0.44	0.4
Gbx2 3110.1	0.4	0.44	0.4

Supplementary Table S5: R^2 values for E-score predictions for each of the 168 HDs in mouse (14) using multiple linear regression (MLR).

Gsc_2327.3	0.32	0.37	0.31
Gsh2_3990.2	0.39	0.41	0.39
Hdx_3845.3	0.27	0.3	0.27
Hlx1_2350.1	0.42	0.44	0.41
Hlxb9_3422.1	0.43	0.47	0.42
Hmbox1_2674.1	0.33	0.37	0.33
Hmx1_3423.1	0.4	0.43	0.39
Hmx2_3424.3	0.38	0.42	0.38
Hmx3_3490.2	0.41	0.45	0.41
Homez_1063.2	0.12	0.16	0.12
Hoxa1_3425.1	0.31	0.33	0.31
Hoxa10_2318.1	0.43	0.46	0.43
Hoxa11_2218.1	0.41	0.44	0.4
Hoxa13_3126.1	0.42	0.46	0.42
Hoxa2_3079.1	0.4	0.44	0.4
Hoxa3_2783.2	0.41	0.46	0.4
Hoxa4_3426.1	0.38	0.4	0.37
Hoxa5_3415.1	0.4	0.44	0.4
Hoxa6_1040.1	0.38	0.41	0.38
Hoxa7_2668.2	0.4	0.43	0.4
Hoxa7_3750.1	0.36	0.38	0.35
Hoxa9_2622.2	0.44	0.48	0.44
Hoxb13_3479.1	0.44	0.48	0.43
Hoxb3_1720.2	0.36	0.4	0.36
Hoxb4_2627.1	0.4	0.43	0.39
Hoxb5_3122.2	0.39	0.42	0.39
Hoxb6_3428.2	0.34	0.37	0.34
Hoxb7_3953.1	0.42	0.44	0.41
Hoxb8_3780.2	0.43	0.46	0.43
Hoxb9_3413.1	0.4	0.44	0.4
Hoxc10_2779.2	0.33	0.36	0.33
Hoxc11_3718.2	0.34	0.38	0.34
Hoxc12_3480.1	0.36	0.41	0.36
Hoxc13_3127.1	0.43	0.47	0.43
Hoxc4_3491.1	0.38	0.41	0.38
Hoxc5_2630.2	0.37	0.4	0.37
Hoxc6_3954.2	0.39	0.41	0.39
Hoxc8_3429.2	0.4	0.43	0.4
Hoxc9_2367.2	0.4	0.43	0.4
Hoxd1_3448.1	0.37	0.41	0.36
Hoxd10_2368.2	0.48	0.5	0.47

Hoxd11_3873.1	0.38	0.42	0.38
Hoxd12_3481.1	0.4	0.44	0.4
Hoxd13_2356.1	0.42	0.47	0.42
Hoxd3_1742.2	0.38	0.42	0.38
Hoxd8_2644.1	0.39	0.42	0.39
lpf1_3815.1	0.39	0.43	0.39
Irx2_0900.3	0.15	0.27	0.15
Irx3_0920.1	0.15	0.25	0.15
Irx3_2226.1	0.16	0.26	0.16
Irx4_2242.3	0.17	0.27	0.17
Irx5_2385.1	0.16	0.26	0.16
Irx6_2623.2	0.17	0.28	0.17
Isl2_3430.1	0.32	0.38	0.32
lsx_3445.1	0.41	0.45	0.4
Lbx2_3869.2	0.36	0.38	0.35
Lhx1_2240.2	0.46	0.49	0.46
Lhx2_0953.2	0.4	0.43	0.39
Lhx3_3431.1	0.43	0.47	0.43
Lhx4_1719.2	0.41	0.45	0.41
Lhx5_2279.1	0.44	0.47	0.44
Lhx6_2272.1	0.41	0.45	0.41
Lhx6_3432.1	0.37	0.4	0.37
Lhx8_2247.2	0.4	0.43	0.39
Lhx9_3492.1	0.41	0.44	0.41
Lmx1a_2238.2	0.49	0.51	0.49
Lmx1b_3433.2	0.45	0.47	0.45
Meis1_2335.1	0.19	0.26	0.19
Meox1_2310.2	0.39	0.44	0.39
Mrg1_2246.2	0.2	0.27	0.2
Mrg2_2302.1	0.22	0.3	0.22
Msx1_3031.2	0.35	0.38	0.34
Msx2_3449.1	0.42	0.47	0.42
Msx3_3206.1	0.48	0.52	0.48
Nkx1-1_3856.3	0.34	0.38	0.33
Nkx1-2_3214.1	0.38	0.42	0.38
Nkx2-2_2823.1	0.2	0.27	0.2
Nkx2-3_3435.1	0.26	0.31	0.26
Nkx2-4_3074.1	0.21	0.29	0.21
Nkx2-5_3436.1	0.23	0.3	0.23
Nkx2-6_3437.1	0.25	0.31	0.25
Nkx2-9_3082.1	0.2	0.25	0.19

Nkx3-1_2923.2	0.28	0.33	0.28
Nkx6-1_2825.1	0.45	0.47	0.44
Nkx6-1_2825.2	0.44	0.47	0.44
Nkx6-3_3446.1	0.47	0.49	0.46
Obox1_3970.2	0.28	0.33	0.28
Obox2_3438.2	0.3	0.32	0.3
Obox3_3439.1	0.26	0.29	0.25
Obox5_2284.1	0.29	0.31	0.29
Obox5_3963.2	0.31	0.33	0.3
Obox6_3440.2	0.31	0.36	0.31
Og2x_3719.1	0.43	0.46	0.43
Otp_3496.1	0.43	0.45	0.43
Otx1_2325.1	0.29	0.34	0.29
Otx2_3441.1	0.28	0.33	0.28
Pax4_3989.2	0.39	0.43	0.39
Pax6_3838.3	0.31	0.35	0.3
Pax7_3783.1	0.42	0.46	0.41
Pbx1_3203.1	0.28	0.36	0.28
Phox2a_3947.1	0.42	0.46	0.42
Phox2b_3948.1	0.42	0.45	0.42
Pitx1_2312.1	0.27	0.32	0.26
Pitx2_2274.3	0.26	0.31	0.26
Pitx3_3497.2	0.26	0.3	0.25
Pknox1_2364.2	0.22	0.3	0.22
Pknox2_3077.2	0.22	0.29	0.22
Pou1f1_3818.1	0.39	0.41	0.38
Pou2f1_3081.2	0.39	0.42	0.39
Pou2f2_3748.1	0.41	0.43	0.41
Pou2f3_3986.2	0.38	0.4	0.38
Pou3f1_3819.1	0.38	0.42	0.38
Pou3f2_2824.1	0.45	0.48	0.45
Pou3f3_3235.2	0.34	0.37	0.34
Pou3f4_3773.1	0.39	0.41	0.38
Pou4f3_2791.1	0.41	0.43	0.4
Pou6f1_1731.2	0.43	0.46	0.43
Pou6f1_3733.1	0.42	0.44	0.41
Prop1_3949.1	0.43	0.45	0.42
Prrx1_3442.1	0.42	0.45	0.42
Prrx2_3072.1	0.44	0.47	0.44
Rax_3443.1	0.38	0.42	0.38
Rhox11_1765.2	0.32	0.4	0.31

Rhox11_2205.1	0.3	0.38	0.3
Rhox6_4251.1	0.37	0.4	0.37
Shox2_2641.2	0.45	0.49	0.45
Six1_0935.2	0.28	0.39	0.27
Six2_2307.2	0.27	0.37	0.27
Six3_1732.2	0.28	0.38	0.28
Six4_2860.1	0.21	0.26	0.21
Six6_2267.4	0.29	0.39	0.29
Six6_2267.5	0.27	0.33	0.27
Tcf1_2666.2	0.31	0.36	0.31
Tcf2_0913.2	0.29	0.32	0.28
Tgif1_2342.2	0.2	0.27	0.19
Tgif2_3451.1	0.17	0.25	0.17
Titf1_1722.2	0.22	0.28	0.22
Tlx2_3498.2	0.36	0.39	0.35
Uncx4.1_2281.2	0.45	0.48	0.45
Vax1_3499.1	0.4	0.43	0.39
Vax2_3500.1	0.39	0.41	0.38
Vsx1_1728.1	0.44	0.47	0.43

HD	Sequence	Sequence + shape	Sequence + shuffled shape
Alx3_3418.2	0.955498	0.957916	0.955512
Alx4 1744.1	0.956072	0.960697	0.956244
Arx 1738.2	0.960326	0.960994	0.960374
Bapx1 2343.1	0.97637	0.976108	0.976255
Barhl1_2590.2	0.889294	0.897671	0.889121
Barhl2_3868.1	0.89054	0.909044	0.890513
Barx1_2877.1	0.912219	0.940121	0.912043
Barx2_3447.2	0.909373	0.939451	0.908992
Bsx_3483.2	0.938386	0.952312	0.938116
Cart1_0997.1	0.963675	0.965653	0.963746
Cart1_1275.1	0.970643	0.97127	0.970621
Cdx1_2245.1	0.948336	0.955471	0.948396
Cdx2_4272.1	0.948368	0.956109	0.948645
Cphx_3484.1	0.924809	0.937898	0.924875
Crx_3485.1	0.970795	0.974656	0.970096
Cutl1_3494.1	0.990339	0.991638	0.990277
Cutl1_3494.2	0.994035	0.993576	0.994107
Dbx1_3486.1	0.998208	0.99785	0.998208
Dbx2_3487.1	0.983013	0.981963	0.983052
Dlx1_1741.2	0.984428	0.984537	0.984429
Dlx2_2273.2	0.969877	0.970326	0.969887
Dlx3_1030.1	0.959318	0.962652	0.959225
Dlx4_3488.2	0.96241	0.965686	0.96249
Dlx5_3419.2	0.975364	0.97296	0.975454
Dmbx1_2277.1	0.972264	0.97649	0.972549
Dobox4_3956.2	0.95488	0.950278	0.954698
Dobox5_3493.1	0.979258	0.978583	0.979246
Duxl_1286.2	0.982177	0.983821	0.982152
Emx2_3420.1	0.962205	0.961167	0.962181
En1_3123.2	0.979771	0.981139	0.979747
En2_0952.1	0.955625	0.955861	0.955614
Esx1_3124.2	0.970128	0.971671	0.970155
Evx1_3952.2	0.943478	0.953044	0.943566
Evx2_2645.3	0.951345	0.962787	0.951371
Gbx1_2883.2	0.956476	0.958714	0.956426
Gbx2_3110.1	0.951278	0.956889	0.951398
Gsc_2327.3	0.967833	0.973092	0.967818
Gsh2 3990.2	0.9589	0.963956	0.9586

Supplementary Table S6: AUC for E-score predictions for each of the 168 HDs in mouse (14).

Hdx_3845.3	0.954485	0.974997	0.953599
Hlx1_2350.1	0.978519	0.982453	0.978569
Hlxb9_3422.1	0.956543	0.957321	0.956646
Hmbox1_2674.1	0.979771	0.98378	0.979966
Hmx1_3423.1	0.972405	0.965322	0.972434
Hmx2_3424.3	0.965615	0.957804	0.965202
Hmx3_3490.2	0.972603	0.965567	0.972641
Homez_1063.2	0.689982	0.862953	0.689984
Hoxa1_3425.1	0.981754	0.983773	0.981984
Hoxa10_2318.1	0.960711	0.96854	0.96057
Hoxa11_2218.1	0.932967	0.946671	0.933294
Hoxa13_3126.1	0.94304	0.951481	0.943282
Hoxa2_3079.1	0.965415	0.971713	0.965313
Hoxa3_2783.2	0.972715	0.977204	0.972879
Hoxa4_3426.1	0.960086	0.966457	0.959908
Hoxa5_3415.1	0.952434	0.961788	0.952428
Hoxa6_1040.1	0.954284	0.962655	0.954163
Hoxa7_2668.2	0.954081	0.960794	0.954143
Hoxa7_3750.1	0.978036	0.981656	0.977954
Hoxa9_2622.2	0.962073	0.965967	0.962312
Hoxb13_3479.1	0.943908	0.947327	0.943663
Hoxb3_1720.2	0.947503	0.957592	0.947554
Hoxb4_2627.1	0.964949	0.972101	0.96488
Hoxb5_3122.2	0.953391	0.95945	0.953361
Hoxb6_3428.2	0.973827	0.981207	0.973818
Hoxb7_3953.1	0.952527	0.95976	0.952786
Hoxb8_3780.2	0.951095	0.953782	0.951222
Hoxb9_3413.1	0.953047	0.96022	0.952751
Hoxc10_2779.2	0.921757	0.936002	0.92145
Hoxc11_3718.2	0.928441	0.941494	0.928513
Hoxc12_3480.1	0.926575	0.944211	0.926423
Hoxc13_3127.1	0.949592	0.955843	0.949692
Hoxc4_3491.1	0.960934	0.968576	0.960966
Hoxc5_2630.2	0.972711	0.978574	0.972639
Hoxc6_3954.2	0.980418	0.989191	0.980288
Hoxc8_3429.2	0.959226	0.969136	0.959296
Hoxc9_2367.2	0.965411	0.971516	0.965171
Hoxd1_3448.1	0.955007	0.955999	0.954988
Hoxd10_2368.2	0.970945	0.972568	0.970867
Hoxd11_3873.1	0.930915	0.944677	0.930785
Hoxd12_3481.1	0.927309	0.942135	0.927218

Hoxd13_2356.1	0.950097	0.955521	0.949683
Hoxd3_1742.2	0.947089	0.955778	0.94727
Hoxd8_2644.1	0.948726	0.961747	0.948476
lpf1_3815.1	0.957739	0.968848	0.957681
Irx2_0900.3	0.870213	0.917014	0.870913
lrx3_0920.1	0.850819	0.890682	0.851249
Irx3_2226.1	0.863058	0.898073	0.86231
lrx4_2242.3	0.889442	0.952166	0.889272
Irx5_2385.1	0.865126	0.903247	0.865572
Irx6_2623.2	0.861907	0.937741	0.860516
Isl2_3430.1	0.945838	0.964972	0.945756
lsx_3445.1	0.948252	0.949826	0.948434
Lbx2_3869.2	0.972809	0.975054	0.972833
Lhx1_2240.2	0.972107	0.974907	0.972146
Lhx2_0953.2	0.96186	0.965319	0.961839
Lhx3_3431.1	0.963848	0.970589	0.963792
Lhx4_1719.2	0.951166	0.954197	0.95102
Lhx5_2279.1	0.9632	0.967859	0.9632
Lhx6_2272.1	0.949151	0.953276	0.949158
Lhx6_3432.1	0.948225	0.951551	0.948307
Lhx8_2247.2	0.95106	0.952191	0.950865
Lhx9_3492.1	0.967578	0.968812	0.967595
Lmx1a_2238.2	0.982678	0.985668	0.98263
Lmx1b_3433.2	0.982531	0.987954	0.98255
Meis1_2335.1	0.972558	0.982593	0.972701
Meox1_2310.2	0.972043	0.969738	0.972231
Mrg1_2246.2	0.968064	0.981803	0.967606
Mrg2_2302.1	0.975857	0.987041	0.97566
Msx1_3031.2	0.950289	0.955246	0.95001
Msx2_3449.1	0.980224	0.9811	0.980177
Msx3_3206.1	0.986552	0.984249	0.986465
Nkx1-1_3856.3	0.934221	0.946638	0.933868
Nkx1-2_3214.1	0.959507	0.964076	0.959742
Nkx2-2_2823.1	0.969605	0.972323	0.96966
Nkx2-3_3435.1	0.963443	0.970735	0.963454
Nkx2-4_3074.1	0.971911	0.972365	0.972031
Nkx2-5_3436.1	0.978092	0.981117	0.978296
Nkx2-6_3437.1	0.97248	0.977037	0.972326
Nkx2-9_3082.1	0.944965	0.950491	0.944346
Nkx3-1_2923.2	0.9813	0.986022	0.981424
Nkx6-1_2825.1	0.969219	0.968319	0.969319

Nkx6-1_2825.2	0.96151	0.960122	0.961317
	0.968697	0.971031	0.968429
Obox1_3970.2	0.983788	0.982771	0.983723
Obox2_3438.2	0.940575	0.953573	0.939715
Obox3_3439.1	0.958956	0.965636	0.958882
Obox5_2284.1	0.955578	0.964393	0.955746
Obox5_3963.2	0.954287	0.965066	0.954183
Obox6_3440.2	0.982077	0.985541	0.982115
Og2x_3719.1	0.981773	0.985086	0.981719
Otp_3496.1	0.962344	0.964254	0.962291
Otx1_2325.1	0.968277	0.970359	0.968413
Otx2_3441.1	0.97175	0.973207	0.971973
Pax4_3989.2	0.955742	0.96674	0.955814
Pax6_3838.3	0.980793	0.986445	0.980471
Pax7_3783.1	0.953363	0.96334	0.953306
Pbx1_3203.1	0.975158	0.977373	0.974981
Phox2a_3947.1	0.957815	0.962942	0.957762
Phox2b_3948.1	0.950782	0.955529	0.950844
Pitx1_2312.1	0.987292	0.985422	0.987253
Pitx2_2274.3	0.984951	0.983274	0.98481
Pitx3_3497.2	0.986016	0.984998	0.986043
Pknox1_2364.2	0.967268	0.981762	0.967324
Pknox2_3077.2	0.978894	0.987409	0.979142
Pou1f1_3818.1	0.936644	0.944854	0.936426
Pou2f1_3081.2	0.935361	0.942553	0.935246
Pou2f2_3748.1	0.93892	0.936155	0.938917
Pou2f3_3986.2	0.927242	0.927048	0.927308
Pou3f1_3819.1	0.933941	0.945397	0.933874
Pou3f2_2824.1	0.952801	0.956697	0.952892
Pou3f3_3235.2	0.912864	0.925416	0.91254
Pou3f4_3773.1	0.938219	0.945985	0.937996
Pou4f3_2791.1	0.952621	0.959574	0.952668
Pou6f1_1731.2	0.97104	0.972902	0.970918
Pou6f1_3733.1	0.968923	0.973187	0.96862
Prop1_3949.1	0.981009	0.984319	0.981051
Prrx1_3442.1	0.956296	0.962402	0.956457
Prrx2_3072.1	0.950342	0.949753	0.950244
Rax_3443.1	0.960608	0.963481	0.960551
Rhox11_1765.2	0.892358	0.915444	0.892637
Rhox11_2205.1	0.907094	0.927628	0.907127
Rhox6_4251.1	0.968882	0.961822	0.968812

Shox2_2641.2	0.969907	0.96668	0.969791
Six1_0935.2	0.881832	0.93761	0.881813
Six2_2307.2	0.865967	0.920068	0.866337
Six3_1732.2	0.904264	0.940388	0.904201
Six4_2860.1	0.903227	0.912851	0.903222
Six6_2267.4	0.908622	0.949128	0.908502
Six6_2267.5	0.896807	0.933403	0.896799
Tcf1_2666.2	0.91938	0.941355	0.91951
Tcf2_0913.2	0.958978	0.970274	0.958893
Tgif1_2342.2	0.965543	0.977833	0.965347
Tgif2_3451.1	0.977969	0.986237	0.977862
Titf1_1722.2	0.961747	0.968131	0.961479
Tlx2_3498.2	0.987431	0.987921	0.987132
Uncx4.1_2281.2	0.950894	0.956832	0.951077
Vax1_3499.1	0.955485	0.963658	0.95559
Vax2_3500.1	0.958388	0.963938	0.958629
Vsx1_1728.1	0.955676	0.953503	0.955677

Supplementary Table S7:

MLR coefficients for the DNA sequence and shape-augmented models, using mouse PBM data (14). See Excel spreadsheet in separate Supplementary Data file for data.

Supplementary Table S8:

DNA binding site logos representing PWMs derived from 8-mers that were predicted by the DNA sequence and shape-augmented models to be bound to the protein, using mouse PBM data (14). Since some of the homeodomains did not have any 8-mers with predicted E-scores > 0.45, we used the 8-mers with the top 5% E-scores for generating the binding site logos that we included.

Column 1: Logos derived from bound 8-mers derived from universal PBM.

Column 2: Logos derived from bound 8-mers predicted by the DNA sequence model.

Column 3: Logos derived from bound 8-mers predicted by the DNA shape-augmented model.

Column 4: Logos derived from bound 8-mers predicted by a model that combines DNA sequence with shuffled shape parameters.

See following pages for data.

Cart1 Sequence

<u>ڇ</u> اور ورو

AA

Dobox4 Seq & shape 晉 1.0

Dobox5 Seq & shape <u></u>음 1 <u>ATIAA I</u>

Duxl Seq & shape 2.0-TGAT 음 1.0-0.0

En1 Seq & shape 2.0-<u>음</u> 1.0 T ... 🗲

<u></u>음 1.0

HIxb9 Sequence

2.0

Hoxa13 Sequence 2.0 A IA ŝ

Homez Seq & shape 2.0 음 1.0

Hoxa1 Seq & shape 2.0 台1

Hoxa10 Seq & shape 2.0 ¢I IA I ·晉 1.0 ſ

Hoxa10 Seq &shuffled shape **ATA** ≝ <u>•</u> • _<mark>S</mark>

Hoxa11 Seq &shuffled shape

Hoxa2 Sequence

2.0-

<u>음</u> 1.0

AA

TA

ę

Hoxb4 Sequence

Hoxc10 Sequence 읗

Hoxc11 Sequence ĄAŢŢĄ I ç

Hoxc12 Sequence 2.0-응

Hoxc13 Sequence 2.0-**TA T**À <u>음</u> 1.0-

Hoxb4 Seq & shape 2.0 台1. Hoxb5 Seq & shape 2.0

Hoxb8 Seq & shape ·음 1 T

Hoxb9 Seq & shape 2.0 <u>응</u> 1.0-¢Å

Hoxc11 Seq & shape 2.0-TAL <u>음</u> 1.0-£

Hoxc12 Seq & shape 2.0 晉1. Ĺ

Hoxc13 Seq & shape 2.0 <u>음</u> 1.0-Tell 0.0

Hoxc11 Seq &shuffled shape <u>₽₽₽Т₽АТтА</u>₽

Hoxc12 Seq &shuffled shape **Let**

Hoxc13 Seq &shuffled shape ·음 1.0-ŢĄ

Hoxc4 Sequence

Hoxd1 Seq & shape 2.0 晉 1.0

Hoxd10 Seq & shape TT I TA -----

Hoxd11 Seq & shape 2.0-TTATTA <u>음</u> 1.0-

Hoxd12 Seq & shape 2.0-음 1.0

Hoxd13 Seq & shape 2.0 台1.0 **IAT**

Hoxc4 Seq &shuffled shape

Hoxd1 Seq &shuffled shape <u></u>음 1

Hoxd10 Seq &shuffled shape

Hoxd11 Seq &shuffled shape

[≝]...<mark>_₽_₽,T,T,AT,T,</mark>₽

<u></u>음 1 <u>A-AI</u>

Irx4 Seq &shuffled shape ┊<mark>╡</mark><u></u>ӐҀѦ╤ѦӡѦӡ_҄ѧ

Irx5 Seq &shuffled shape etez Ata 음 1.0-1¢

Irx6 Seq &shuffled shape 台 **A**

Isl2 Seq &shuffled shape <u>음</u> 1.0 ... 🔽 🧙

<u></u>음 1.0 Hoxd8 Seq & shape 2.0 台1.0 <u>z I AA</u>

Hoxd3 Seq & shape

2.0

Irx2 Seq & shape 2.0 ·음 1.0

Irx3 Seq & shape 2.0-A_FACATeA 台1.0

Irx3 Seq & shape 2.0 A,AÇA 台1.0

Irx4 Seq & shape 2.0-<u></u>음 1 <u>А</u>дАСА́А

Irx5 Seq & shape <u>음</u> 1.

Irx6 Seq & shape 2.0-0.0

台1

Isl2 Seq & shape 2.0 <u>음</u> 1.0 IAAI TΑ

Hoxd3 Sequence 2.0 Hoxd8 Sequence 2.0 **I AA I TA** 10 **Ipf1 Sequence**

2.0 **ATTA**

Irx2 Sequence 2.0 <u>AÇA</u>çA

Irx3 Sequence 2.0-음 1.0

Irx3 Sequence 2.0-A, tà, Ata 台1.0

Irx4 Sequence Ă÷Ŕ÷ĤŢŔŧ

Irx5 Sequence 2.0ette Ataliae <u>음</u> 1.0-

Irx6 Sequence 2.0-台1.0 ATAÇA 0.0

Isl2 Sequence 2.0-IAA ITA <u></u>음 1.c <u>_</u> ...

2.0

<u></u>음 1.0

台1.

.월 1.C

음 1.0

<u>음</u> 1.0

2.0

음 1.0

Lhx9 Sequence

2.0-

。...

台1.0

A

Nkx1-1 Sequence

Nkx1-1 Seq &shuffled shape

Nkx6-1 Sequence

2.0

台1.0

Nkx6-1 Seq & shape 2.0 <u></u>음 1 Nkx6-3 Seq & shape 2.0 <u>음</u> 1.0

0.0 Obox1 Seq & shape 2.0 음 1.0

Obox3 Seq & shape 台1.0

Obox5 Seq & shape 2.0 AA 晉 1.0 ç

Obox5 Seq & shape 2.0 台 €A ATT I NN

Obox6 Seq & shape 2.0-TAATcs 음 1.0-0.0

Og2x Seq & shape 2.0-

Otp Seq & shape 2.0-晉 1.0

台1.0-**444** ⊓<u></u>__ Nkx6-3 Seq &shuffled shape <u></u>음 1. Obox1 Seq &shuffled shape A

Nkx6-1 Seq &shuffled shape

Obox2 Seq &shuffled shape ·음 1.0 <u> Adda</u>

Obox3 Seq & shuffled shape

Obox5 Seq & shuffled shape 台1.0 ¢Å¢z

Obox5 Seq &shuffled shape

Obox6 Seq & shuffled shape [≝]1.0

Og2x Seq &shuffled shape

Otp Seq &shuffled shape <u>هم</u>

Otx1 Sequence

Pitx2 Seq & shape 2.0-AA С ·음 1.0-**Ą**Ι

Otx1 Seq &shuffled shape

0.0

Pknox1 Sequence 2.0 gtųACA 台1.0 Pknox2 Sequence 2.0-GACA <u>음</u> 1.0-Pou1f1 Sequence 2.0 <u>응</u> 1.0 ĢΠ Pou2f1 Sequence ·음 1 **→AI** Pou2f2 Sequence 2.0 《 1. Pou2f3 Sequence ŝ TerlealI Pou3f1 Sequence <u>ATTA</u> 台1 **AT** Pou3f2 Sequence 2.0-읕 1 Ŷ

Pitx3 Sequence

2.0

Pou3f3 Sequence 2.0 ŝ 4Å4 ATTA

Pitx3 Seq & shape 2.0 台1.0

Pou2f1 Seq & shape 음 1.c

Pou2f2 Seq & shape 2.0 晉 1.0

Pou2f3 Seq & shape 2.0 台1.0 **I AA** ...5

Pou3f1 Seq & shape 2.0 ATRATIA: <u>음</u> 1.0-

Pou3f2 Seq & shape 2.0-Ŷ

台1

Pou3f3 Seq & shape 2.0 **음** 1.0 **AA**A TĄT

Pitx3 Seq &shuffled shape 음

Pou3f1 Seq &shuffled shape ATTA [≝]... **₩**

Pou3f2 Seq &shuffled shape Ŷ

Pou3f3 Seq &shuffled shape ≝ 1.º **₽**₽] **AA**

Pou3f4 Seq &shuffled shape

Rhox6 Sequence Shox2 Sequence 2.0 <u>AA I</u> Six1 Sequence 2.0-<u>응</u> 1.0-- 7

Six2 Sequence

Six3 Sequence 2.0 .

Six4 Sequence 2.0-**A**qATCq

Six6 Sequence Alaler

Six6 Sequence 2.0 <u>ett</u>TATA_t ·음 1.0

Tcf1 Sequence 2.0 **AA**q A **Tcf2 Sequence**

2.0-<u>AAÇT</u> 0.0

Six3 Seq & shape 2.0-AIAIAT 음 1.0-0.0

Six4 Seq & shape 2.0 <u>At</u>A] 台1.0 С

Six6 Seq & shape 2.0-TATAT <u>음</u> 1.0-

Tcf1 Seq & shape AAq

Tcf2 Seq & shape 2.0 AC 省 1.0-0.0

2.0 GACAI 台1.0-<u>тĢ</u>

Vsx1 Sequence TAATta A_ş 台 1.0

