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SUMMARY

DNA sequence is a major determinant of the binding
specificity of transcription factors (TFs) for their
genomic targets. However, eukaryotic cells often ex-
press, at the same time, TFs with highly similar DNA
binding motifs but distinct in vivo targets. Currently,
it is not well understood how TFs with seemingly
identical DNA motifs achieve unique specificities
in vivo. Here, we used custom protein-bindingmicro-
arrays to analyze TF specificity for putative binding
sites in their genomic sequence context. Using yeast
TFs Cbf1 and Tye7 as our case studies, we found that
binding sites of these bHLH TFs (i.e., E-boxes) are
bound differently in vitro and in vivo, depending
on their genomic context. Computational analyses
suggest that nucleotides outside E-box binding sites
contribute to specificity by influencing the three-
dimensional structure of DNA binding sites. Thus,
the local shape of target sites might play a wide-
spread role in achieving regulatory specificity within
TF families.

INTRODUCTION

Transcriptional regulation is effected primarily by sequence-

specific transcription factors (TFs) that recognize short DNA

sequences (5–15 bp long) in the promoters or enhancers of the

genes whose expression they regulate (Bulyk, 2003). Determina-

tion of the DNA recognition properties of TFs is essential

for understanding how these proteins achieve their unique regu-

latory roles in the cell.

TFs are typically annotated according to the structural class of

their DNA binding domains. Members of a particular class (i.e.,
C

paralogous TFs) often have similar DNA binding preferences

(Badis et al., 2009). However, despite apparently shared binding

specificities, individual TF family members often exhibit nonre-

dundant functions. In some cases, differences in the core DNA

binding site motifs have been shown to contribute to differential

in vivo binding by closely related TFs (Busser et al., 2012; Fong

et al., 2012; Grove et al., 2009; Wei et al., 2010). However, in

many cases, the DNAmotifs of paralogous TFs are virtually iden-

tical, and still the proteins select different genomic targets in vivo.

In these cases, interactions with protein cofactors are thought to

be responsible for differential in vivo DNA binding of paralogous

TFs. However, such cofactors can be difficult to identify, and

only a few conclusive examples are known (e.g., Hollenhorst

et al., 2009; Mann and Chan, 1996; Slattery et al., 2011). Another

factor that determines in vivo TF binding is the local chromatin

environment (Arvey et al., 2012; Lelli et al., 2012; Thurman

et al., 2012; Zhou and O’Shea, 2011). Nevertheless, protein

cofactors and chromatin context are unlikely to completely

explain differential binding specificity of paralogous TFs.

Here, we investigate a potential mechanism through which

TFs with highly similar DNA binding motifs can achieve differen-

tial binding in vivo. Several studies have indicated that nucleo-

tides flanking TF binding sites (i.e., nucleotides outside the

core DNA binding site motif) can affect binding specificity

(Leonard et al., 1997; Morin et al., 2006; Nagaoka et al., 2001;

Rajaram and Kerppola, 1997). Thus, we investigated whether

the genomic context of putative TF binding sites differentially

affects binding of paralogous TFs.

In this case study, we examined S. cerevisiae basic-helix-

loop-helix (bHLH) TFs Cbf1 and Tye7. These factors have highly

similar DNA binding motifs (MacIsaac et al., 2006; Zhu et al.,

2009) but interact with different sets of genomic regions in vivo

(Harbison et al., 2004) (Figure 1). Importantly, these differences

in in vivo DNA binding are not due to the TFs being active under

different conditions, in which the accessibility of potential DNA

binding sites might be different (as has been observed for other
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Figure 1. DNA Binding Specificities of

S. cerevisiae Cbf1 and Tye7

(A) Cbf1 and Tye7 have highly similar DNA binding

specificities according to consensus sequences

in the Saccharomyces Genome Database (SGD),

PWMs from ChIP-chip data (Harbison et al., 2004),

orPWMs fromuniversalPBMdata (Zhuet al., 2009).

(B) Cbf1 and Tye7 have little overlap in genomic

regions bound in rich medium (YPD) (ChIP-chip p >

0.005; Harbison et al., 2004).

(C) PWMs of Cbf1 and Tye7 are enriched both in

genomic regions bound in Cbf1_YPD and

Tye7_YPD ChIP-chip data. Dashed line shows

expected enrichment for a random PWM.

(D) Universal PBM data for Cbf1 and Tye7 show

differences (left) not seen in replicate PBM ex-

periments for the same TF (data not shown) nor in

PBM experiments for the same factor on two

different universal array designs (right).

See also Figure S2.
bHLH factors; Fong et al., 2012). Instead, the Cbf1 and Tye7

ChIP-chip data (Harbison et al., 2004) were both collected

from the same culture conditions (YPD), in which the two pro-

teins had access to the same E-box (CAnnTG) binding sites.

Thus, mechanisms other than chromatin accessibility contribute

to differential in vivo DNA binding by these two TFs.

Using custom-designed ‘‘genomic-context protein binding

microarrays’’ (gcPBMs), we analyzed binding of Cbf1 and Tye7

to their putative E-box binding sites centered within native

genomic sequences. Our gcPBM data show that when placed

within genomic flanking sequences, E-box sites are bound with

different preferences by these two proteins. Importantly, these

differences in binding are observed not just in vivo but also

in vitro, where cofactors or histones are not present. Thus, the

DNA sequence itself is responsible for differential binding by

these two TFs.

Notably, the identified differences in DNA binding preferences

between Cbf1 and Tye7 are not apparent from these proteins’

binding site motifs (Figure 1). Therefore, to further investigate

the source of the binding differences, we used the gcPBM

data in a regression analysis to build computational models of

the DNA binding specificities of Cbf1 and Tye7. Compared to
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traditional DNA motif models (i.e., posi-

tion weight matrices, PWMs), these

models are more accurate in predicting

in vitro DNA binding. Examination of the

sequence features that are important for

our regression models revealed that fea-

tures located in the genomic sequences

flanking the E-boxes contribute to DNA

binding specificity. Our results show that

differences in the intrinsic sequence

preferences of related TFs, even when

they occur outside the core DNA binding

site motif, can contribute to differential

TF-DNA binding. Importantly, these

differences in intrinsic sequence prefer-
ences, as identified through our in vitro studies, can partly

explain differential DNA binding in vivo.

DNA sequences flanking the E-box motif, which were found

to affect binding of Cbf1 and Tye7, do not typically form base-

specific contacts with bHLH proteins (De Masi et al., 2011).

Thus, we hypothesized that these sequences contribute to

binding specificity indirectly by influencing the three-dimen-

sional structure of the DNA binding sites. A role of DNA shape

in achieving binding specificity of TFs has been suggested for

Drosophila Hox proteins (Joshi et al., 2007; Slattery et al.,

2011) and other protein families (Rohs et al., 2009, 2010). How-

ever, for these examples, DNA shape was a result of the nucle-

otide sequence within the TF binding site. Here, we found that

nucleotides flanking Cbf1 and Tye7 binding sites alter struc-

tural properties of their DNA targets and, thus, contribute to

their differential binding preferences. This finding reveals a

mechanistic explanation for the role of nucleotides that are

located outside of a binding motif to TF binding specificity.

Moreover, this finding suggests why TFs bind in vivo to only

a subset of available target sites with identical core motifs.

Future studies will investigate the generality of our findings

within the bHLH family as well as other TF families. Our results



suggest that the local shape of DNA binding sites might play

a critical role in achieving regulatory specificity within TF

families.

RESULTS

S. cerevisiae TFs Tye7 and Cbf1 Recognize Highly
Similar DNA Sequence Motifs Despite Binding Different
Target Sites In Vivo
TFs from the bHLH protein family recognize DNA binding sites

containing the E-box motif (CAnnTG) (Atchley and Fitch, 1997),

with different family members sometimes having different prefer-

ences for the two central base pairs of the E-box (De Masi et al.,

2011; Fong et al., 2012; Grove et al., 2009). In S. cerevisiae, the

bHLH family comprises eight TFs that have diverse functions.

Among these TFs, Cbf1 and Tye7 are most similar in terms of

their DNA binding specificities (Figure 1A) (Cherry et al., 2012;

MacIsaac et al., 2006; Zhu et al., 2009), with both having a strong

preference for the E-box CACGTG. However, the sets of in vivo

targets bound by Cbf1 and Tye7, as determined by ChIP-chip

(Harbison et al., 2004), barely overlap (Figure 1B), and the two

TFs regulate different processes: Cbf1 is involved in methionine

biosynthesis and chromatin remodeling (Cai and Davis, 1990;

Kent et al., 2004), whereas Tye7 plays a major role in the regula-

tion of glycolytic genes (Nishi et al., 1995). It is currently unclear

how two TFs with highly similar DNA binding motifs attain their

regulatory specificities.

The Cbf1 and Tye7 DNA binding motifs, although very similar,

are not identical. For this reason, we first asked whether the

small differences in these motifs (Figure 1A) can explain, at least

in part, their differential binding in vivo. Using DNAmotifs derived

from in vivo (ChIP-chip) and in vitro (PBM) data, we computed an

area under the curve (AUC)-based enrichment score (see Exper-

imental Procedures) (Gordân et al., 2009) for the enrichment of

Cbf1 and Tye7 motifs in in vivo DNA binding data (Harbison

et al., 2004), where a value of 1.0 corresponds to perfect enrich-

ment, and a value of 0.5 corresponds to the enrichment of a

random motif. If the DNA motifs can explain, even in part, the

differential in vivo binding, then we would expect the Cbf1 motif

to be significantly more enriched in the Cbf1 ChIP-chip data

and the Tye7 motif to be significantly more enriched in the

Tye7 ChIP-chip data. However, we find that the motifs of both

of these TFs are equally well enriched in both the Cbf1 and

Tye7 ChIP-chip data sets (Figure 1C), which indicates that the in-

formation in the existing PWMs does not explain why these TFs

bind different sites in vivo. A similar enrichment analysis that

included the S. cerevisiae bHLH protein Pho4, which also has

a strong preference for the E-box CACGTG, revealed that the

Pho4 PWM was not significantly enriched in the Cbf1 or Tye7

ChIP-chip data (Gordân et al., 2009). The same study showed

that the Tye7 PWM was not significantly enriched in the Pho4

ChIP-chip data, and the Cbf1 PWMwas onlymarginally enriched

(in agreement with previous studies of Pho4 and Cbf1; Zhou and

O’Shea, 2011). Thus, differences in the PWMs of Pho4 versus

Cbf1/Tye7 can explain, at least in part, the differences in their

in vivo DNA binding. However, the Cbf1 and Tye7 PWMs are

too similar to explain why these two TFs interact with distinct

sets of E-box sites in vivo.
C

An alternative way to represent the DNA binding specificities

of TFs utilizes data generated by universal PBMs. PBM experi-

ments performed on universal arrays (Berger et al., 2006) provide

measurements of TF binding to all possible 8 bp sequences

(8-mers), as well as a measure of the PBM enrichment score

(E-score) for each 8-mer. E-scores range from �0.5 to +0.5,

with higher values corresponding to higher sequence prefer-

ence; typically, E-scores >0.35 correspond to specific TF-DNA

binding (Berger et al., 2006; Gordân et al., 2011). We compared

previously published 8-mer E-scores for Cbf1 and Tye7 (Zhu

et al., 2009) and found that, although they are correlated, the

binding specificities of the two TFs are not identical (Figure 1D);

there are many 8-mers that are strongly preferred by only one

of these two TFs. We did not observe such differences between

universal PBM experiments performed for the same factor (Cbf1)

on two different universal array designs (Figure 1D). This

suggests that Cbf1 and Tye7 have slightly different specificities

in vitro.

Tye7 and Cbf1 Bind with Different Specificities to
Putative DNA Binding Sites in Their Genomic Context
To further investigate the differences in the in vitro DNA binding

specificities between Cbf1 and Tye7, we designed a custom

PBM containing putative Cbf1 and Tye7 DNA binding sites in

their native genomic context (Figures 2A–2C). In this array

design, termed gcPBM, we initially focused on genomic regions

bound in vivo by either of the two TFs, defined as regions with

p < 0.005 in Cbf1 or Tye7 ChIP-chip data (Harbison et al.,

2004). To identify putative TF binding sites in the S. cerevisiae

genome, we used universal PBM data for Cbf1 and Tye7 (Zhu

et al., 2009) to search for DNA sites containing two consecutive,

overlapping 8-mers with E-scores >0.35 (Busser et al., 2012).

Next, we selected 30 bp genomic regions centered at the puta-

tive binding sites to create a set of ‘‘ChIP-chip bound’’ probes for

our gcPBM. Similarly, we created a set of ‘‘ChIP-chip unbound’’

probes by searching for putative Cbf1 and Tye7 binding sites in

the genomic regions not bound in the ChIP-chip experiments

(ChIP-chip p > 0.5).

For two proteins with identical specificities, we expect their

in vitro DNA binding signals (here, the natural logarithm of the

PBM fluorescence signal intensity) to be highly correlated. How-

ever, comparison of the in vitro DNA binding specificities of Cbf1

and Tye7 for their putative ChIP-chip bound sites (Figure 2D)

clearly shows that the two TFs interact differently with these

genomic sites. Importantly, even when we extend the compari-

son to include the ChIP-chip unbound probes, we observe the

same trend (Figure 2E). Finally, although Cbf1 and Tye7 were

tested at the same concentration (200 nM) on the array, Cbf1

bound with higher affinity to a larger number of probes than did

Tye7. To ensure that the generally higher-affinity binding by

Cbf1 is not the reason for the low correlation between in vitro

DNAbinding by these two TFs, we repeated the PBMexperiment

at a lower concentration of Cbf1 (100 nM). As expected, we saw a

lower overall PBM signal for Cbf1, but the differences in DNA

binding specificity betweenCbf1 and Tye7weremaintained (Fig-

ure S1). In conclusion, our gcPBMdata show that, despite having

highly similar DNA binding motifs, the two TFs exhibit different

binding preferences for their putative genomic binding sites.
ell Reports 3, 1093–1104, April 25, 2013 ª2013 The Authors 1095
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Figure 2. Design of gcPBM to Compare Cbf1 and Tye7 DNA Binding Preferences

(A and B) Arrays included (A) ChIP-chip bound probes and (B) ChIP-chip unbound probes, representing 30 bp genomic regions; see Extended Experimental

Procedures for details.

(D and E) Cbf1 and Tye7 show significant differences in binding in vitro to (D) ChIP-chip bound and (E) ChIP-chip unbound probes. Both proteins were tested

at 200 nM in PBMs. The plots show the natural logarithm of the normalized PBM signal intensities, with higher numbers corresponding to higher-affinity binding.

See also Figure S1.
Base Pairs Flanking the E-Box Binding Site Contribute
to DNA Binding Specificity In Vitro
The DNA binding signal observed in our gcPBM experiments re-

flects the specificities of Cbf1 and Tye7 for E-box binding sites

and their genomic flanks. Henceforth, we will refer to the two

base pairs immediately upstream and downstream of the

E-box as the ‘‘proximal flanks’’ and the base pairs more than

two positions away from the E-box as the ‘‘distal flanks’’ (Fig-

ure 3A). Previous studies of bHLH DNA binding specificity

focused either on the core E-box or the 2 bp proximal flanks

(e.g., De Masi et al., 2011; Fong et al., 2012; Grove et al., 2009;

Maerkl and Quake, 2007; Wang et al., 2012). Our analyses of

the gcPBM data revealed that in addition to the E-box site

and the proximal flanks, the distal flanks also contribute to the

differential DNA binding specificities of Cbf1 and Tye7.

We first investigated whether the central two base pairs in the

E-box binding sites are responsible for the different binding pref-

erences. Analysis of the binding of these two TFs for all possible

E-boxes revealed that the 2 bp central spacer does not appear to

be the cause of the binding specificity differences, and as ex-

pected, both proteins have a strong preference for the E-box

CACGTG (Figure S2). Thus, in our analyses of the gcPBM data,

we focused primarily on genomic regions containing this E-box.

Our gcPBMdata indicate that not all CACGTG sites across the

genome are bound equally well by Tye7: depending on the flank-

ing genomic regions, this E-box is bound in vitro with a wide
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range of affinities, ranging from highly preferential to nonspecific

binding (Figure 3B). We observed a similar trend for Cbf1 (Fig-

ure S3). Even when we expanded the binding sites to include

the 1 bp or 2 bp proximal flanks, we still observed wide variation

in Cbf1 and Tye7 binding signal (Figures 3B, 3C, and S3), which

indicates that the distal flanks contribute significantly to DNA

binding specificity. Importantly, the wide range of binding

affinities is not due to probes containing different numbers of

binding sites because the probes comprise a single binding

site located in the center of the probe (see Experimental Proce-

dures). Thus, the differences in TF-DNA binding observed for

probes that contain identical E-boxes and proximal flanks

(e.g., ATCACGTGAA in Figure 3C) are due to contributions

from the distal flanks.

Regression-Based Models Can Accurately Predict
In Vitro DNA Binding of Cbf1 and Tye7
To understand what features in the genomic flanks contribute to

the DNA binding specificities of Cbf1 and Tye7, we performed a

regression analysis of the gcPBM data. We used support vector

regression (SVR) (Drucker et al., 1997) to train linear models that

use sequence features derived from the proximal and distal

flanks to predict the DNA binding signal observed with gcPBMs

(Figures 4A and 4B). Because both Cbf1 and Tye7 bind DNA as

homodimers, and their E-box binding sites are palindromic, we

combined the two flanking regions 50 and 30 of the E-box motif
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Figure 3. Flanking Sequences Contribute to Cbf1 and Tye7 DNA

Binding Specificity

(A and B) Proximal or distal flanks surrounding the E-box (A) result in (B)

variation in Tye7DNAbinding signal for probes that contain the preferredE-box

CACGTG, or any of the possible 8-mers centered at this E-box. Numbers in

parentheses indicate number of probes containing each 6-mer or 8-mer.

(C) Wide variation in DNA binding signal is observed even when we restrict the

analysis to probes containing a specific 10-mer.

The boxes show the range between the 25th and 75th percentiles, the line

within each box indicates the median, and the outer lines extend to 1.5 times

the interquartile range from the box.

See also Figure S3.
(Figure 4A) and derived the sequence features from the com-

bined flanks. Next, we derived features that reflect the number

of occurrences of each possible 1-mer, 2-mer, and 3-mer at

each position in the combined flanks. Thus, each feature derived

from the combined flanks can take one of three values: 0, 1, or 2

(see example shown in Figure 4A).

We performed a cross-validation analysis to determine the

best parameter values to be used by the regression algorithm

(see Experimental Procedures). Using these parameter values,

the linear regression models predicted the PBM log signal

intensity values for both TFs with high accuracy using all

1-mer, 2-mer, and 3-mer features (Figure 4B). Regression

models using just 1-mer features performed poorly (Figure S4),

which suggests that individual base pairs in the flanking regions

do not contribute independently to the DNA binding specificity.

Adding 2-mer and 3-mer features improved the prediction

accuracy, but including 4-mer features did not improve predic-
C

tion accuracy further (see Extended Experimental Procedures),

likely because such models have too many features compared

to the number of training examples and are thus prone to over-

fitting the training data.

Sequence Features in the Proximal and Distal Flanks
Contribute to DNA Binding Specificity
The regression analyses described above used a linear kernel

SVR. The advantage of a linear kernel is that one can use linear

SVR models to compute weights for all the features used in the

regression. The resulting weights are readily interpretable

because they reflect to what degree each feature contributes

to the predicted target values (i.e., PBM log signal intensities).

Here, positive weights correspond to sequence features that

have a positive contribution to the DNA binding signal, i.e., we

can interpret such features as being preferred by a given TF,

whereas features with negative weights have a negative effect

on binding.

The feature weights for Cbf1 and Tye7 (Figure 4C; Table S1)

indicate that sequence features in both the proximal and the

distal flanks contribute to the predicted DNAbinding specificities

of these TFs. As expected, features closer to the E-box generally

have an important contribution (i.e., large feature weights). For

example, the nucleotide A at position 4, immediately next to

the E-box, is strongly preferred by both Cbf1 and Tye7, consis-

tent with prior reports on the binding preferences of these TFs

(MacIsaac et al., 2006; Zhu et al., 2009). To determine how far

away from the E-box the important features are located, we

repeated the SVR analysis with flanking regions of different

lengths (2–12 bp) to assess whether the overall prediction

accuracy changes when shorter flanking regions are used.

Briefly, for Cbf1, we obtained the best prediction accuracy (Pear-

son R2 = 0.745) when 11 bp flanks were used in the SVR analysis,

whereas for Tye7, we obtained the best prediction accuracy

(R2 = 0.898) when 5 bp flanks were used (Figure S4B). By

comparison, models using just the 2 bp proximal flanks achieved

accuracies of 0.694 and 0.836 for Cbf1 and Tye7, respectively.

These correlations are expected because the 2 bp proximal

flanks have important contributions to the DNA binding speci-

ficity. However, incorporating distal flanks allowed us to predict

the PBM signal intensities even better: the prediction errors for

the best Cbf1 and Tye7 models (using 11 bp and 5 bp flanks,

respectively) are significantly lower than the prediction errors

for models using 2 bp flanks (Wilcoxon p = 0.035 and 0.00091

for Cbf1 and Tye7, respectively). Thus, our results show that

although the proximal flanks have a higher contribution to the

predicted DNA binding signal compared to distal flanks, the

latter are necessary for achieving the best prediction accuracy.

To further test the accuracy of our regression models, we

introduced mutations at various positions in the proximal and

distal flanks of the 30 bp genomic sites on our gcPBM (see

Extended Experimental Procedures). We used wild-type and

mutated sequences to generate a custom PBM (henceforth

referred to as the ‘‘validation’’ PBM) and tested both Cbf1 and

Tye7 on this array. Our predictions from the SVR models agree

very well with the measured PBM log signal intensities on the

validation array (overall Pearson R2 was 0.84 for Cbf1 and 0.75

for Tye7; Figures S4C–S4F). Thus, both the Cbf1 and the Tye7
ell Reports 3, 1093–1104, April 25, 2013 ª2013 The Authors 1097
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Figure 4. Regression Analysis of gcPBM Data

(A) For each 30 bp probe, we combined the two flanking regions, and we generated 1-mer, 2-mer, and 3-mer features. We used ε-SVR to train linear models that

predict the PBM log signal intensity of each probe based on its sequence features. Positions are numbered starting from the center of the CACGTG core.

(B) Leave-one-out cross-validation analysis indicates that regression models for Cbf1 and Tye7 accurately predict PBM signal intensity.

(C) Analysis of the sequence features with the largest positive and negative weights in SVRmodels shows that base pairs in both the proximal and distal flanks are

important for predicting DNA binding specificity. Bar plots show the top 20 positive and negative weights. For brevity, feature names are shown only for the top

positive/negative weight and then for every other weight among the top 20.

(D) Features show numerous differences between Cbf1 and Tye7.

See also Figure S4 and Table S1.
SVRmodels accurately predict the individual DNA binding spec-

ificities of these TFs.

Next, to investigate how the various sequence features

contribute to differences in DNA binding specificity between

Cbf1 and Tye7, we compared the feature weights computed

from the regression models for these TFs (Figure 4D). Although

the two sets of weights are positively correlated (R2 = 0.32), there

are numerous differences between them, resulting from both

proximal and distal flanks. For example, Tye7 disfavors the

nucleotide C at position 4 (i.e., immediately downstream of the

E-box), whereas Cbf1 actually prefers a C at this position (see

feature ‘‘4-C’’ in the upper-left quadrant of Figure 4D). Unlike

this difference, which is apparent in their DNA binding site motifs

(Figure 1A), most differences in feature weights are subtle, in that

they cannot be inferred from the motifs, and the individual con-

tributions of the corresponding features are small. However,

taken together, these features can accurately predict the

different DNA binding specificities of Cbf1 and Tye7, as illus-

trated by the accuracy of the SVR models on both our initial

gcPBM and the validation PBM. This suggests that the features

represented by the distal flanks might not correspond to direct

recognition by Cbf1 and Tye7 but, rather, might contribute

to TF-DNA binding specificity indirectly by influencing the

three-dimensional DNA structure. To further investigate this

hypothesis, we performed a detailed DNA shape analysis of

the sequences bound by Cbf1 and Tye7 in gcPBMs.
1098 Cell Reports 3, 1093–1104, April 25, 2013 ª2013 The Authors
DNA Shape Features Are Characteristic for bHLH
Binding Sites
Weused a high-throughput (HT) DNA shape prediction approach

(Slattery et al., 2011) to analyze differential DNA shape prefer-

ences selected by Cbf1 and Tye7 as a function of the in vitro

binding signal (i.e., PBM log signal intensity). This DNA shape

prediction method derives structural features of DNA (e.g.,

groove width and helical parameters) by mining Monte Carlo

(MC) trajectories using a sliding pentamer window (see Experi-

mental Procedures). Groove width in B-DNA is measured over

a region of four base pairs and thus is affected by the sequence

composition of at least half a helical turn (Rohs et al., 2005). In

contrast, helical parameters describe DNA shape at dinucleotide

resolution and give rise to groove geometry (Joshi et al., 2007).

We analyzed both groove geometry and helical parameters.

Minor groove width and propeller twist (Figure 5A) and roll and

helix twist (Figure S5) reflect the unique shape of E-boxes

(CAnnTG), with minor groove widening at both CpA (TpG) base

pair steps due to weak stacking interactions and the tendency

of these dinucleotides (at positions �2/�3 and +2/+3) to open

the minor groove. Propeller twist, roll, and helix twist further indi-

cate a distinct conformation of the E-box. Our analysis of these

features shows differences between high- and low-affinity bind-

ing. For example, minor groove width tends to be wider for high-

compared to low-binding affinity sites, and propeller twist can

distinguish binding preferences of Tye7 versus Cbf1 (Figure 5A).
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Figure 5. DNA Shape Analysis

(A) Heatmaps show the averageminor groove width (left) and propeller twist (right) for sequences derived from the gcPBM. Sequences were sorted in decreasing

order of gcPBM signal intensity for either Cbf1 (top) or Tye7 (bottom) and grouped into 50 bins. Average DNA shape parameters were computed within each bin.

(B) Different proximal flanks surrounding the common CACGTG E-box are preferred by Tye7 and Cbf1. Sequences located in the upper-left triangle are pref-

erentially bound by Tye7, and 10-mers located in the lower-right triangle are preferentially bound by Cbf1. Dashed lines indicate respective cutoffs of a difference

of R30 in rank between Tye7 preferred (red) and Cbf1 preferred (blue). Lighter-colored dots exhibit larger differences.

(C) DNA shape variation due to flanks surrounding CACGTG selected preferentially by Cbf1 (light blue) or Tye7 (light red). Asterisks (*) indicate positions with

significant differences (p < 0.05, Mann-Whitney U test) in the minor groove width (upper) or propeller twist (lower) between the sequences preferred by Cbf1 or

Tye7. The boxes show the range between the 25th and 75th percentiles, the line within each box indicates the median, and the outer lines show the range between

the 5th and 95th percentiles. The symmetry of the box plots is due to the shape predictions having been performed for the combined flanks.

(D) Incorporating DNA shape features improves binding intensity predictions in comparison to using DNA sequence (1-mers) alone. The improvement is similar to

that obtained by adding 2-mer and 3-mer features.

See also Figure S5.
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Figure 6. Differences in the In Vitro DNA Binding Preferences of Cbf1 and Tye7 Are Important for Differential In Vivo Binding

(A) Overlap between sets of genomic regions bound by Cbf1 and Tye7 in ChIP-chip data in rich medium (YPD).

(B) Scatterplot of Tye7 versus Cbf1 PBM log signal intensity for 30-mer probes that occur in genomic regions bound in vivo only in Tye7_YPD (red), only in

Cbf1_YPD (blue), or in both data sets (gray).

(C) Cbf1 and Tye7 in vitro binding signal (i.e., natural logarithm of gcPBM probe intensity) for 30-mer probes selected from genomic regions bound only by Cbf1

(blue) or only by Tye7 (red) in vivo. The differences in PBM log signal intensity between the two sets of 30-mer probes are statistically significant by Kolmogorov-

Smirnov (KS) tests.

The boxes show the range between the 25th and 75th percentiles, the line within each box indicates the median, and the outer lines extend to 1.5 times the

interquartile range from the box.

See also Figure S6.
DNA Shape Features in Flanking Regions Are Distinct
for Binding Sites Preferred by Cbf1 versus Tye7
Because our previous analysis of PBM data indicated that Tye7

and Cbf1 both bind preferentially to the E-box CACGTG (Zhu

et al., 2009), we hypothesized that specificity for distinct binding

sites arises from 50 and 30 flanking sequences. Therefore, we

collected all the sequences from our gcPBM data that contained

the E-boxCACGTG, and thenwe compared the ranked log signal

intensities for Tye7 and Cbf1 for these probes. We next analyzed

the groups of sequences bound preferentially either by Tye7 or

Cbf1, definedasgcPBMprobeswith adifferenceR30 in rankbe-

tween the two TFs (shown by dashed lines in Figure 5B). Next, for

both sets of sequences, we predicted DNA structural features

and analyzed them for variation in DNA shape due to different

flanks. We performed this analysis for both strands of the double

helix and averaged the results because of the palindromicity of

the CACGTG E-box. Our results indicate that both of these TFs

select sites with distinct minor groove geometry (Mann-Whitney

U test, p = 0.03, 0.008, 8.73 10�7, and 5.083 10�7 at positions 6,

4, 3, and 2, respectively) and propeller twist (p = 0.02, 0.01, 0.04,

0.02, and 1.13 10�5 at positions 9, 8, 7, 4, and 2) (Figure 5C) due

to different flanking regions of the E-box (positions �3 to +3) be-

ing selected by Tye7 versus Cbf1 (Figure 5B). We observed

similar statistically significant distinctions in roll (at dinucleotide

positions 1/2, 3/4, 4/5, and 5/6) and helix twist (at dinucleotide

positions 2/3, 3/4, and 10/11) (Figure S5).

Incorporation of DNA Shape Features Improves Binding
Intensity Predictions in Comparison to Using DNA
Sequence Alone
If DNA shape distinguishes binding targets selected by Cbf1 and

Tye7, the use of structural features should also improve binding

affinity predictions. To test this hypothesis, we incorporated

structural features into our linear SVR approach. We found that

adding DNA shape features (minor groove width, roll, propeller

twist, and helix twist) leads to an improvement in binding speci-
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ficity predictions similar to those obtained by adding 2-mer and

3-mer features: R2 = 0.72 and 0.89 using 1-mer and DNA shape

features (Figure 5D) compared to R2 = 0.74 and 0.88 using 1-

mer, 2-mer, and 3-mer features, for Cbf1 and Tye7, respectively

(Figures 4B and 5D). Incorporating DNA shape features in addi-

tion to 2-mer and 3-mer features did not improve the prediction

accuracy any further. This suggests that 2-mers and 3-mers

implicitly contain structural information, whereas DNA shape

implicitly contains interdependencies between nucleotides at

different positions of the binding site. Using structural features

instead of 2-mer and 3-mer features has the advantage that

the total number of features is much smaller, and thus, regres-

sion algorithms other than SVR can be used successfully to learn

accurate models of DNA binding specificity. To illustrate this

point, we used L2-regularized linear regression and obtained

highly accurate predictions: R2 = 0.7 and 0.87 for Cbf1 and

Tye7, respectively, using 1-mers and DNA shape features

(Figure 5D; Experimental Procedures).

Genomic Sequences Flanking the E-Box Motif
Contribute to Explaining the Differences in In Vivo DNA
Binding between Cbf1 and Tye7
Both our regression analysis based on DNA sequence features

and our DNA shape analysis show that Cbf1 and Tye7 interact

differently with their putative genomic binding sites. To assess

whether these differences contribute to differential DNA binding

by these two TFs in vivo, we examined whether the DNA

sequences preferred in vivo by a particular TF also have

higher TF binding signal in vitro (Figure 6). Figure 6B shows a

scatterplot of Cbf1 versus Tye7 in vitro binding signal for the

30-mer PBM probes selected from genomic regions bound

in vivo by either of the two TFs (Harbison et al., 2004). We colored

the data points based on in vivo specificity: blue for PBM probes

selected from the 37 regions bound only by Cbf1 in vivo, red for

PBM probes selected from the 67 regions bound only by Tye7

in vivo, and gray for PBM probes selected from the 11 genomic



regions bound by both Cbf1 and Tye7 in vivo. Next, for each TF,

we compared the in vitro signal for PBM probes bound uniquely

by only one TF in vivo (i.e., blue versus red data points) and

found that DNA sequences preferred in vivo by a particular TF

also have higher binding signal for that TF in vitro (Figure 6C) (Kol-

mogorov-Smirnov p = 0.00078 for Cbf1 and 0.003 for Tye7). We

performed a similar analysis focusing on the PBM probes con-

taining the E-box CACGTG and observed the same trend (Fig-

ure S6; Extended Experimental Procedures). Our results suggest

that subtle differences in the intrinsic sequence preferences

of Cbf1 and Tye7 observed in vitro on gcPBMs partially explain

differential DNA binding in vivo observed in ChIP-chip data.

DISCUSSION

This study shows that subtle differences in the intrinsic prefer-

ences of paralogous TFs for sequences flanking the core DNA

binding site motif can contribute to differential DNA binding

in vivo. Using the S. cerevisiae TFs Cbf1 and Tye7 as our model

system, we show that, when tested in vitro in their native

genomic flanking sequences, putative DNA binding sites of

Cbf1 and Tye7 are bound differentially by the two proteins. As

expected, the differences between the intrinsic sequence prefer-

ences of the two TFs observed in vitro on our gcPBMs do not

fully explain the differences in in vivo DNA binding observed in

ChIP-chip data (Harbison et al., 2004). Other mechanisms might

be used in vivo to provide additional specificity. For example,

Cbf1 interacts with Met4 and Met28 to regulate genes involved

in sulfur metabolism (Lee et al., 2010; Siggers et al., 2011). In

addition, Cbf1 has chromatin-remodeling properties (Kent

et al., 2004) that may allow it to bind certain CACGTG sites

that are inaccessible for Tye7 due to nucleosome occupancy.

However, to fully understand how these different mechanisms

are used, it is important to have a better characterization of the

intrinsic sequence preferences of the two TFs.

The analyzed structural features characterize free DNA (i.e.,

DNA not bound by the proteins) and thus reflect the intrinsic

properties of the E-box binding sites and their genomic

sequence context. Analysis of DNA shape shows that a widening

of theminor groove characterizes the E-box in its unbound state,

as we observed for sites selected by Tye7 and Cbf1. The same

observation was made for the crystal structures of E-boxes in

complex with the yeast TF Pho4 (Shimizu et al., 1997) and

mammalian bHLH TFs (Brownlie et al., 1997; Ma et al., 1994).

This suggests that DNA shape features observed in complexes

of bHLH factors and their DNA targets are inherent to DNA bind-

ing sites and thus may constitute previously underappreciated,

widely used signals in cis-regulatory sequences recognized by

TFs. This form of intrinsic DNA shape recognition was previously

observed for Hox proteins (Joshi et al., 2007; Slattery et al., 2011)

and other TFs (Rohs et al., 2009). In addition to reporting this

observation for E-box binding sites, we show here that structural

variations due to different flanking sequences of E-boxes are a

source of differences in DNA binding specificity among bHLH

TFs. Consequently, we demonstrate that the integration of

DNA shape and sequence leads to improved binding intensity

predictions, similar to the use of 2-mers and 3-mers, compared

to sequence (1-mers) alone.
C

In this study, we expressed both TFs as full-length proteins,

so residues within or outside the DNA binding domain may play

a role in the protein-DNA interactions. bHLH factors are known

to select the E-box CAnnTG through DNA contacts by their

His5 and Glu9 residues from each monomer of the bHLH

dimers, which recognize the CpA (TpG) base pair steps (Shi-

mizu et al., 1997). Based on cocrystal structures of a human

bHLH factor and the yeast factor Pho4 bound to DNA (Shimizu

et al., 1997), modeling, and mutagenesis studies, we showed

previously that the Arg13 side chains of bHLH dimers select

C/G base pairs at the two central positions of the CACGTG

E-box through the formation of base-specific hydrogen bonds

with the guanine bases at positions �1 and +1 (De Masi

et al., 2011). Because the yeast bHLH factors Tye7, Cbf1,

and Pho4 all have His5, Glu9, and Arg13 residues, the

CACGTG motif is the E-box that is most preferred by all of

these TFs. However, the reason why Tye7, Cbf1, and Pho4 pre-

fer different sequences flanking the common E-box motif

CACGTG is likely due to the length and sequence variation of

the loop that separates the H1 and H2 helices in the bHLH pro-

tein (Figure 7). Cocrystal structures are not available for either

Cbf1 or Tye7 bound to DNA, but crystal structures of Pho4

(Shimizu et al., 1997) and the human homolog of Cbf1, the up-

stream stimulatory factor (USF), have been solved in complex

with DNA (Ferré-D’Amaré et al., 1994). The crystal structures

of Pho4 and USF bound to DNA illustrate that the conforma-

tions of the respective loops between the H1 and H2 helices

in both bHLH monomers can give rise to different DNA recog-

nition in the regions flanking the E-box. The two loops of

the Pho4 homodimer each form an additional a helix, whereas

the USF loops are fully extended (Figure 7). Although base-

specific contacts by bHLH factors are restricted to the E-box,

the extended loops of both USF monomers lead to phosphate

and other nonspecific contacts further upstream and down-

stream from the E-box, which can also be detected in

DNase I footprints (Hesselberth et al., 2009; Neph et al., 2012).

We suggest that these additional contacts outside the E-box

may result in the selection of different flanking sequences

through DNA shape features. In addition, structural differences

in the flanking regions affect the ability of DNA to deform upon

protein binding in order to optimize bHLH-DNA contacts and

protein-protein interactions within the bHLH dimer.

In summary, our combined experimental and computational

analysis of DNA sequence and shape preferences of yeast

bHLH factors demonstrates that Cbf1 and Tye7 share the

same E-box as a result of highly specific base contacts in the

major groove, whereas they prefer different DNA flanking

sequences because of structural features that enhance bHLH

loop-DNA phosphate contacts that optimize the induced fit

within the complex. Thus, this study demonstrates that bHLH

factors use a combination of two different mechanisms of pro-

tein-DNA recognition: ‘‘base readout’’ and ‘‘shape readout’’

(Harris et al., 2012; Rohs et al., 2010); base readout in the major

groove conserves the E-box, whereas local DNA shape readout

in the flanking regions appears to enable distinct DNA binding

preferences among paralogous TFs. It will be interesting to

investigate if other TF families utilize DNA shape readout in

similar ways because this could be an important mechanism
ell Reports 3, 1093–1104, April 25, 2013 ª2013 The Authors 1101



A
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Figure 7. Sequence and Structure Comparison of bHLH TF-DNA Complexes

(A) Assignment of secondary structure elements of S. cerevisiae Tye7, Cbf1, and Pho4, and human USF shows the sequence and length variation of the loops

between a helices H1 and H2. The helical regions were either derived from crystal structures (Pho4 and USF) (Shimizu et al., 1997; Ferré-D’Amaré et al., 1994) or

predicted from amino acid sequence (Cbf1 and Tye7) (Cole et al., 2008).

(B and C) In complex with their target sites, (B) yeast Pho4 and (C) human USF form base-specific contacts with the E-box, whereas the loops between the H1

and H2 helices of the bHLH motifs adopt different conformations. The Pho4 loop regions form additional short a helices, whereas the USF loops are fully

extended. The bHLH TF-DNA complexes shown are based on crystal structures with Protein Data Bank IDs 1A0A (B) and 1AN4 (C).
through which closely related TFs recognize different DNA target

sites and perform different regulatory roles in the cell.

EXPERIMENTAL PROCEDURES

Enrichment of DNA Binding Site Motifs in ChIP-Chip Data

Using Cbf1 and Tye7 DNA binding motifs derived from both in vivo (ChIP-chip)

(MacIsaac et al., 2006) and in vitro (PBM) (Zhu et al., 2009) data, we computed

the AUC enrichment, as described previously (Gordân et al., 2009), for each

motif in the ChIP-chip data sets Cbf1_YPD and Tye7_YPD, which correspond

to Cbf1 and Tye7, respectively, tested in rich medium, yeast peptone dextrose

(YPD) (Harbison et al., 2004). In brief, from each ChIP-chip data set, we

selected the ‘‘bound’’ and ‘‘unbound’’ probes, defined as probes with p <

0.005 and p > 0.5, respectively. Next, for each probe, we computed the prob-

ability of it being bound by a TFwith a particular DNAmotif.We used the scores

for the bound and unbound probes to generate an ROC curve and took the

AUC as a measure of enrichment of the motif in the ChIP-chip data.

Protein Expression and Purification

GST-Cbf1 and GST-Tye7 (Zhu et al., 2009) were overexpressed in E. coli BL21

(DE3) cells (New England BioLabs) and purified by FPLC (ÅKTAprime plus)

using GSTrap FF affinity columns (GE Healthcare). Anti-GST western blots

were performed to assess protein quality and concentration. See Extended

Experimental Procedures for further details.

gcPBM Design

We designed a custom oligonucleotide array in 4344K format (Agilent Tech-

nologies; AMADID #029393) containing putative Cbf1 and Tye7 DNA binding

sites. Briefly, we represent three categories of 30 bp genomic sequences on

our gcPBM: (1) ChIP-chip bound probes, (2) ChIP-chip unbound probes,
1102 Cell Reports 3, 1093–1104, April 25, 2013 ª2013 The Authors
and (3) negative control probes. ChIP-chip bound probes corresponded

to genomic regions bound in vivo by Cbf1 or Tye7 (ChIP-chip p < 0.005 in

rich medium [YPD]; Harbison et al., 2004) and containing at least two consec-

utive 8-mers with universal PBM E-scores >0.35 (Zhu et al., 2009). All putative

binding sites occurred at the same position within the probes on the array.

ChIP-chip unbound probes corresponded to genomic regions with ChIP-

chip p > 0.5 and at least two consecutive 8-mers at a more stringent

universal PBM E-score threshold of 0.4. Negative control probes corre-

sponded to S. cerevisiae intergenic regions with a maximum 8-mer E-score

of <0.3. We also designed probes that contain, within constant flanking re-

gions, all 10 bp sequences that occur within the ChIP-chip bound probes

and contain the E-box CACGTG but are flanked by synthetic rather than native

genomic sequence. The reported PBM signal intensity for each probe is the

median PBM signal intensity over four replicate spots. The validation array

(Agilent Technologies; AMADID #041711) contains 30 bp genomic sequences

from our initial custom array, with zero through four mutations designed at

various positions in the genomic sequences. Details are provided in Extended

Experimental Procedures.

PBM Experiments and Data Analysis

Custom-designed arrays were synthesized (AMADID #029393 and #041711),

converted to double-stranded DNA arrays by primer extension, and used in

PBM experiments essentially as described previously (Berger and Bulyk,

2009; Berger et al., 2006). PBM data quantification was performed as previ-

ously described (Berger and Bulyk, 2009; Berger et al., 2006). See Extended

Experimental Procedures for details.

SVR Analysis

SVR was trained separately for Cbf1 and Tye7. For each TF, we first selected

ChIP-chip bound and ChIP-chip unbound probes centered at the E-box

CACGTG. To ensure that no additional binding sites occur in the regions



flanking CACGTG, we selected probes (280 for Cbf1 and 312 for Tye7) for

which the maximum PBM 8-mer E-score in the flanks was <0.3. Next, for

each selected sequence, we computed the number of occurrences of each

1-mer, 2-mer, and 3-mer in the combined flanks (Figure 4A), or the corre-

sponding DNA shape features. We thus obtained sparse feature matrices for

each of the two TFs. As target features for the SVR analyses, we used the nat-

ural logarithm of the Cbf1 and Tye7 PBM fluorescence signal intensities. We

used the ε-SVR algorithm implemented in the LIBSVM toolkit (Chang and

Lin, 2011) for all SVR analyses. We performed a grid search using 10-fold

and leave-one-out cross-validation to determine the best values for parame-

ters ε and C (see Extended Experimental Procedures). Using these parame-

ters, we trained the final SVR models using all 280 sequences for Cbf1 and

all 312 sequences for Tye7 and used them to predict the PBM log signal inten-

sities for all probes on the validation array. We also performed an SVR analysis

using the 312 sequences selected for Tye7 but shuffling the PBM log signal in-

tensities; the best R2 on randomized sets of sequences was <0.1 (Figure S4A).

High-Throughput DNA Shape Prediction

DNA shape parameters were derived from a high-throughput (HT) prediction

approach (Slattery et al., 2011) based on mining data from Monte Carlo (MC)

simulations (Joshi et al., 2007; Rohs et al., 2005) of 2,121 different DNA

fragments. These MC simulations were analyzed with CURVES (Lavery and

Sklenar, 1989) to calculate average minor groove width and helical parame-

ters as a function of sequence. The resulting structural features were used to

describe the average conformation of each of the 512 unique pentamers. The

average conformation at the central base pair (for groove width and propeller

twist) or the two central base pair steps (for roll and helix twist) of each

unique pentamer was used to characterize a pentamer. A query table for

pentamers was assembled using these data, and a sliding pentamer window

was implemented to compute structural features for any DNA sequence. We

validated our HT method for DNA shape predictions based on a comparison

with all crystal structures of protein-DNA complexes available in the Protein

Data Bank with a DNA duplex of at least one helical turn (10 bp) and no

chemical modifications as specified elsewhere (Bishop et al., 2011). Spear-

man’s rank correlation coefficients are 0.67 for minor groove width, 0.55

for propeller twist, 0.63 for roll, and 0.54 for helix twist. Comparison with

solution-state NMR structures of the Dickerson dodecamer in its unbound

state using residual dipolar coupling (Wu et al., 2003) yields excellent quan-

titative agreement with our predictions for the four discussed parameters,

with Pearson correlation coefficients of 0.84 for minor groove width, 0.79

for propeller twist, 0.93 for roll, and 0.49 for helix twist.

Statistical Analysis of DNA Shape Parameters

For Cbf1 and Tye7 separately, the selected sequences were grouped into 50

bins according to their ranked natural log signal intensity from gcPBM data.

To extract the effect of the flanking sequences, the probes were filtered by

the criterion of sharing the E-box motif CACGTG. The signal intensity ranks

for all those probes were compared, and flanks bound preferentially by Tye7

or Cbf1 were identified as a difference R30 in rank between the two TFs

(Figure 5B). The statistical significance of differences in the predicted groove

width and helical parameters of these two distinct groups at each position

was determined by the Mann-Whitney U test.

Regularized Linear Regression Analysis Using DNA Sequence and

Shape Features

We trained L2-regularized linear regression models using sequence (1-mer)

features alone or in combination with DNA shape features (minor groovewidth,

roll, propeller twist, and helix twist). A 10-fold cross-validation was performed

to assess their performance. In each round of cross-validation, the optimal

regularization parameter l was selected using an embedded 10-fold cross-

validation on the training data set.
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